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1. Introduction

Velocity model is one of the most important features 
extracted from the seismic reflection data as it has been 
used for many purposes such as depth imaging, time-
depth conversion and geomechanical model building. The 
resolution of velocity model building is highly dependent 
on the complexity of the method to be used and the 
resolution of the initial model and seismic data. For 
example, the velocity analysis is the simplest and fastest 
way to create the velocity model, however, the resolution 
of this method is poor in both lateral and time directions as 
the distance between two picking common depth points 
(CDP) is much higher than the one between two initial CDP 
intervals. Similarly, within a CDP semblance spectrum for 
velocity picking, the picking time interval is much higher 
than the time sampling rate. Full waveform inversion (FWI), 
in the reverse way, gives the velocity model the highest 
resolution and accuracy. However, the computational 

SOME RESULTS OF SEISMIC TRAVEL-TIME REFLECTION 
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cost is too high to be used widely in the seismic reflection 
industry. To reach the balance between the accuracy and 
computational cost, the seismic reflection tomography 
(SeisT) approach is an alternative method for getting the 
velocity model for migration purposes and to be used as 
the initial model for FWI problem, which produces a higher 
resolution than SeisT. 

Tomography is an inversion process that provides a 
tool for velocity estimations from multichannel seismic 
reflection data. Tomography can be performed either 
in the prior-migration domain or in the post-migration 
domain. In each of these domains, we can access two 
types of information: kinematic (travel time) and dynamic 
(amplitude and phase) [1]. Thus, we have at least four 
ways to sort the tomographic inverse problem out. Table 
1 gives a summary of the approaches used for velocity 
estimation.

During this work, we demonstrate a study of ray-
based reflection travel time tomography applied for 
synthetic and field velocity models. The workflow of this 
approach is shown in Figure 1. There are several reasons 
why we chose this kind of approach for studying velocity 

Summary

Velocity model is essential for seismic data processing as it plays an important role in migration processes as well as time depth 
conversion. There are several techniques to reach that goal, among which tomographic inversion is an efficient one. As an upgrade 
version of handpicked velocity analysis, the tomography technique is based on the reflection ray tracing and conjugate gradient method 
to estimate an optimum velocity model and can create an initial high quality model for other intensive imaging and modelling module 
such as reverse-time migration (RTM) and full-waveform inversion (FWI). For the mentioned benefit, we develop a seismic travel-time 
reflection tomography (SeisT) module to study the accuracy of the approach along with building the technical capability in seismic 
processing. The accuracy of the module has been tested by both synthetic and real seismic field data; the efficiency and the accuracy of 
the model have been proven in terms of development method as well as field data application.

Key words: Seismic signal processing, seismic reflection, ray tracing, velocity modelling, seismic tomography, tomographic inversion.
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1. Introduction

The designs of development plans for oil and gas 
fields are based on the definition of a drilling schedule. 
Development wells are drilled to (a) reach and support 
a production plateau; (b) maximise the hydrocarbon re-
covery; and (c) provide injection for pressure support or 
secondary recovery.

A PRACTICAL METHOD FOR PLANNING LARGE NUMBER  
OF HORIZONTAL WELLS WITH A RESERVOIR MODEL  
FOR A FIELD DEVELOPMENT PLAN 
Guido Fava1, Dinh Viet Anh2

1Schlumberger
2Petrovietnam Exploration Production Corporation
Email: anhdv@pvep.com.vn
https://doi.org/10.47800/PVJ.2021.10-02

The task addressed in this work is a full population 
of the field with as many horizontal wells as needed to 
get the maximum possible production rate and optimal 
desired production that is maintained for several years. 
This study should be distinguished from other studies 
available in the literature that are focused on production 
optimisation with a minimum number of well locations 
yielding a high recovery per well. The well population in 
this work is based on a regular pattern rather than selec-
tion of optimal random locations. The evaluation of every 
possible location on a regular pattern was found to be 
a frequent request from field operators because it suits 
their local and economic circumstances. Interference be-

Summary

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical 
model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require 
a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. 
However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern.

One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain 
standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and 
spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible 
under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly 
reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a 
computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, 
development area boundaries, and reservoir geological structure features.

Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and 
avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells 
may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning 
module would be a useful tool for commercial simulation software to ease engineers' tasks.

Key words: Asset and portfolio management, field development optimisation and planning, water saturation, reservoir simulation,  
directional drilling.
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1. Introduction

After years of production, the oil and gas industry 
is facing an increasing demand for decommissioning 
which requires large costs and negatively affects the 
surrounding environment. Though worldwide estimates 
vary greatly, on average, decommissioning (decom) a 
complete platform may cost USD 15 million to USD 20 
million in shallow waters (such as in the Gulf of Mexico), 
about GBP 30 million (USD 40 million) for small platforms, 
and GBP 200 million (USD 269 million) for large structures 
in deep waters (such as in the UK North Sea) [1]. According 
to Rystad Energy [2], the total value of the global pool of 
decom projects that will accumulate through 2024 could 
reach USD 42 billion, dominated by the UK North Sea. 
Besides, post-decom environment impacts are also of 
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great concern since a typical eight-leg structure provides 
a home for 12,000 to 14,000 fishes, and a typical four-leg 
structure provides 2 to 3 acres of habitat for hundreds 
of marine species, according to a study by the Coastal 
Marine Institute [3]. Therefore, one of the critical issues in 
the oil and gas industry is how to reduce the decom cost 
and protect the environment.

Conventionally, late-life offshore oil and gas assets 
must be decommissioned if they cannot work longer or be 
reused/repurposed. If the scrap steel market is stable and 
developed, contractors will get scrap revenue from the sale 
[4]. Otherwise, the scrap yards will charge the contractors 
to unload steel platforms [5]. Operating contractors are 
responsible for executing safe and environmentally sound 
decommissioning when operations cease. Nevertheless, 
almost all scrapping yards are on beaches so pollutants 
can cause serious environmental harm with long-term 
effects for occupational, public, and environmental health 
[4]. A “green” solution for offshore oil and gas assets is 

Summary

In recent years, the oil and gas industry has been facing objections from a public greatly concerned with the severe environmental 
impact caused by fossil fuels and their infrastructures, and strong demands from policy makers seeking to meet decarbonisation goals. 
Amidst a global energy transition, the future demand, finance, and social responsibilities of oil and gas companies are increasingly in 
question. One of the biggest problems of the industry is what are the “green” solutions for the late-life offshore oil and gas assets. Energy 
integration with reusing or repurposing oil and gas assets for new technologies could be a worthwhile investment strategy helping reduce 
carbon emission from oil and gas production as well as accelerating carbon capture and storage (CCS) and green hydrogen development 
to support the global decarbonisation. According to research, the late-life offshore oil and gas assets play an important role in energy 
integration while helping to have more opportunities to develop the new technologies that are in the early stages of development with 
high capex, necessary to make them more economically attractive and facilitate maximum energy integration. Reusing or repurposing 
oil and gas infrastructure can lead to 30% capex saving and million tons of CO2 pa emission reductions.

In this paper, potential concepts of energy integration for offshore oil and gas assets are introduced, and some lessons learned and 
implications for reusing or repurposing late-life offshore assets for Vietnam are also presented.

Key words: Energy integration, late-life offshore oil and gas assets, electrification, green hydrogen, carbon capture and storage.
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1. Introduction

Velocity model is one of the most important features 
extracted from the seismic reflection data as it has been 
used for many purposes such as depth imaging, time-
depth conversion and geomechanical model building. The 
resolution of velocity model building is highly dependent 
on the complexity of the method to be used and the 
resolution of the initial model and seismic data. For 
example, the velocity analysis is the simplest and fastest 
way to create the velocity model, however, the resolution 
of this method is poor in both lateral and time directions as 
the distance between two picking common depth points 
(CDP) is much higher than the one between two initial CDP 
intervals. Similarly, within a CDP semblance spectrum for 
velocity picking, the picking time interval is much higher 
than the time sampling rate. Full waveform inversion (FWI), 
in the reverse way, gives the velocity model the highest 
resolution and accuracy. However, the computational 
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cost is too high to be used widely in the seismic reflection 
industry. To reach the balance between the accuracy and 
computational cost, the seismic reflection tomography 
(SeisT) approach is an alternative method for getting the 
velocity model for migration purposes and to be used as 
the initial model for FWI problem, which produces a higher 
resolution than SeisT. 

Tomography is an inversion process that provides a 
tool for velocity estimations from multichannel seismic 
reflection data. Tomography can be performed either 
in the prior-migration domain or in the post-migration 
domain. In each of these domains, we can access two 
types of information: kinematic (travel time) and dynamic 
(amplitude and phase) [1]. Thus, we have at least four 
ways to sort the tomographic inverse problem out. Table 
1 gives a summary of the approaches used for velocity 
estimation.

During this work, we demonstrate a study of ray-
based reflection travel time tomography applied for 
synthetic and field velocity models. The workflow of this 
approach is shown in Figure 1. There are several reasons 
why we chose this kind of approach for studying velocity 

Summary

Velocity model is essential for seismic data processing as it plays an important role in migration processes as well as time depth 
conversion. There are several techniques to reach that goal, among which tomographic inversion is an efficient one. As an upgrade 
version of handpicked velocity analysis, the tomography technique is based on the reflection ray tracing and conjugate gradient method 
to estimate an optimum velocity model and can create an initial high quality model for other intensive imaging and modelling module 
such as reverse-time migration (RTM) and full-waveform inversion (FWI). For the mentioned benefit, we develop a seismic travel-time 
reflection tomography (SeisT) module to study the accuracy of the approach along with building the technical capability in seismic 
processing. The accuracy of the module has been tested by both synthetic and real seismic field data; the efficiency and the accuracy of 
the model have been proven in terms of development method as well as field data application.

Key words: Seismic signal processing, seismic reflection, ray tracing, velocity modelling, seismic tomography, tomographic inversion.
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estimation. Firstly, there is more physical information 
contained in the prior-migration domain than in the post-
migration domain, where data has been migrated by 
using a not-optimised velocity model. Secondly, although 
waveform-based tomography can create a highly detailed 
velocity model, it demands a large computational cost. 
The ray-based method produces a velocity model of less 
resolution but still has the advantage of “robustness” 
(good quality), when carefully implemented [2].

2. Theoretical background

Like many other geophysical inverse problems, the 
ray-based reflection travel-time tomography consists of 
two basic steps: 

- Determine a set of seismic reflectors and estimated 
travel times for various source-receiver positions based on 
the Eikonal equation’s solution. 

- Iteratively update the velocity model by minimising 
the difference between calculated travel time and 
observation travel time. In this algorithm, the conjugate 

gradient method is adopted to build a best-fit velocity 
model by iteratively comparing estimated travel times 
with the observed travel time for a given set of horizons.

2.1. Seismic ray tracing formulation and its numerical 
solution

In this step, the procedure of estimating travel times 
is performed by Runge-Kutta ray tracing technique in 
depth domain. Hence, for real data, all input objects of ray 
tracing procedure, including starting model and seismic 
horizons, must be converted from time to depth domain. 
In case of synthetic data, converting is not required 
because the velocity model is already in depth domain 
and all reflectors will be hand-picked on this model.

Ray tracing is a method for estimating the ray 
path through a media of varying propagation velocity, 
absorption characteristics, and reflecting surfaces. Under 
these circumstances, the ray path may bend, change 
direction, or reflect off surfaces, thus complicating 
analysis. 

Figure 1. Ray-based reflection travel time tomography workflow.

Table 1. Types and domains of tomography for velocity estimation [1]

 Prior-migration domain Post-migration domain 
Ray-based 
(kinematic) 

Re�ection travel-time tomography  
Cross-well transmission tomography  
Refraction tomography 

Pre-stack time migration tomography  
Pre-stack depth migration tomography 

Waveform-based 
(dynamic)  

Full waveform inversion (also known as waveform tomography, wave 
equation tomography, and di�raction tomography) 

Wave-equation migration velocity analysis (WEM-VA)  
Wavepath tomography 

Initial model (depth)
• Convert from time model 
• Very likely inaccurate 

Ray tracing
• Include 

optimisation for 
shooting angle

Ray path Travel time Compare and minimise 
(error < epsilon)

Real travel 
time

New model Tomo inversion

Best model

YES

Tomo inversion

Horizon 
Picked in time domain (post-stack) 

NO

Use handpicked velocity to 
convert to the depth domain

Estimate travel time for each trace

Include 
reconverting 
horizons to the 
depth domain
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The ray trajectories are found by solving a certain differential 
equation that can be derived from the wave equation as follows [3]: 

 

Equation 1 has a solution assumed in the form:

 

where T( ⃗) ( ⃗) and T( ⃗) ( ⃗) are unknown functions describing amplitude 
and travel time that are expected to vary with position. 

By substituting Equation 2 into Equation 1 and considering 
weak velocity gradients as well as high frequencies regardless of the 
velocity gradient, we achieve the following results:

Equation 4 is called the geometrical spreading equation because 
its solution can be shown to describe the flow of energy along a ray 
path.

Equation 3 is the non-linear, partial-differential equation called 
the eikonal equation. For high frequencies or small velocity variations, 
a solution to the eikonal equation gives accurate travel times 
through complex media [3]. Using the method of characteristics, 
we can transform this equation into a system of first-order ordinary 
differential equations (ODE) that can be solved by standard numerical 
methods

 

where 

⃗

= ( )

= −
( )

( ⃗)
.dp

dt

 is slowness vector.

Our study adopts the Runge-Kutta 
method to solve this ODE system [4]. 

The time step dt for solving the ODE 
system (Equation 5) must be chosen to be 
consistent with the velocity grid. If dt is too big, 
the velocity model will be updated sparsely, 
because the conjugate gradient method will 
edit only grids, where rays propagate through. 
If dt is too small, the number of tracing steps 
for a ray to reach its intended destination 
will be large and this will also lead to heavy 
computational cost. In our study, we apply an 
additional linear interpolation to ensure that 
every grid on the ray path is updated in the 
iterative procedure.

Our velocity field is discretised into 
samples for computational simulation. In this 
field, the ray trajectory is estimated repeatedly 
after every fixed time interval or step (Figure 
2). At the end of each step, the current position 
of a tracing ray is updated and the values of 
the velocity and ray parameters at the nearest 
sample to this position are used to define the 
next position of the ray. 

During simulated seismic acquisition, 
waves initiate at a shooting point (source) at 
or near the surface, propagate through the 
Earth’s layers and may reach the receiving 
point (receiver), also at or near the surface, by 
reflection, refraction, or both. This complicated 
process can be described on a velocity model, 
as mentioned above, by using the Runge-
Kutta ray tracing technique. Figure 1 shows 
the graphical representation of this model 
where simulated rays are reflected off the 
picked horizon and turn back to the surface. 
A distinctive feature of reflection tomography 
is that the ray will be reflected off a chosen 
horizon before arriving at the surface receiver. 
The calculation of the slowness vector of a 
reflected ray is demonstrated in Figure 3, 
where 1 2 is the incident ray’s slowness and 

1 2 is the reflected ray’s slowness vectors. In 
the co-ordinate system Ogh at the reflection 
point on the horizon, the tangent opponent 
of the slowness vector is unchanged, while 
the normal opponent is changed in sign. Thus, 
components of the reflected slowness vector Figure 2. Graphical representation of ray tracing in velocity field [1].
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are computed from those of the given incident 
slowness vector as follows:

 

where pg1, 2 and ph1, 2 denote as the 
incident ray and reflected ray slowness, 
respectively.  

Additionally, the reflected rays as shown in 
Figure 2 could also travel in many other ways 
such as the turning ray that may never reach 
the intended reflector as in Figure 8. This is due 
to the total internal reflection at the shallower 
reflector (the incident angle is greater than the 
critical angle). Though the turning ray is also 
very useful for near surface tomography (such 
as building the velocity model for seismic land 
survey), it is not the target of this study.

A crucial issue for ray tracing is that for a 
particular pair of surface source-and-receiver, 
how do we determine the shooting angle for 
the ray from the source so that it could reach 
the intended receiver’s location? If we shoot 
the ray by an arbitrary angle, it is likely not to 
reach the target receiver. Our solution for this 
issue is to use shooting angles determined by 
several methods. A simple way to try is to use 
a basic geometrical calculation as shown in 
Figure 4. Given the location of S and R (source 
and receiver) and the dip β of the reflector 
(near the location of CDP), the shooting angle  
can be computed by the formula:

 

where d is the source-receiver offset and   
his the depth of the projection point of the 
midpoint on the horizon.

As this ray tracing simulation was not 
utilised well for estimating an optimum 
shooting angle, the geometrically calculated 
value was used as an initial guess to optimise 
the procedure. Several optimisation algorithms 
such as bisection search, Gauss-Newton 
algorithm and the steepest descent method 
[4] have been tested, and we find out that the 
latter usually gives the best angle estimates for 
an acceptable number of iterations. In some 

exceptional cases when the steepest descent does not work properly 
due to the local minimum convergence, the bisection search will be 
employed to reach the nearest possible point to the receiver position.

For far-offset-receivers on the same source record, we can apply 
the least-squares regression [4] to the set of near-offset shooting 
angles (already calculated/optimised) to arrive at a more accurate 
starting value for the steepest descent calculation of the current 
shooting angle. By this way, the number of steepest descent iterations 
will be much less than that in the case of using the geometrical initial 
angle estimation. In Table 2, we summarised the way to find out the 
optimum. 

A particular notice during our experiments to improve 
optimisation convergence was that a smoothing filter would need 
to be applied to the velocity model and all horizons. Moreover, the 
speed and accuracy of the angle finding process are also enhanced 
significantly. 

Figure 3. Recalculation of slowness vector at the point of reflection.

Figure 4. Geometrical representation of angle finding problem.
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2.2. Inversion problem

If the velocity model is very deviated from 
the actual one, the errors between estimated 
travel times by the simulated ray tracing and 
their true values will be large. We thus need to 
minimise these errors using the optimisation 
routine by gradually adjusting the velocity 
model toward that goal. By this way, the 
estimated velocity model will gradually 
approach the actual one. 

Consider the velocity model described 
earlier in Figure 2, which is divided into 
nine constant velocity cells, and a single ray 
reflecting off a horizon at point B, for a source 
at A and a receiver at C. The arrival time TABC  for 
the ray path ABC is given by Equation 7 as: 

 

 

Using many ray paths traversing the cells in 
the model, we can obtain a set of simultaneous 
equations (with measured travel time T and 
the unknowns are elements vi of the velocity 
field). The task of solving those simultaneous 
equations (known as the tomography 
inversion) will result in the determination of 
the velocity distribution along such ray paths.

We have many arrival time measurements 
for a given sub-surface reflector element. 
Consider the five ray paths gathering shown in 
Figure 5, and the associated arrival times along 
the moveout trajectory (Figure 6). The travel 
time expression for these five ray paths can be 
written as: 

  

Or, in matrix notation:  

where ti is the total travel time along the ith ray path; 

 dij is the path length in the jth cell of the velocity model for ith the   
ray; 

vj is the velocity in the jth cell; 

sj is the slowness in the jth cell, where we have N cells in the model 
(in this example, N = 9).

In Equation 10, T is a vector of two-way travel time measured 
for sound waves emanating from a source, propagating through the 
earth and reflecting off a horizon, then returning to an individual 
receiver. D is a matrix of path lengths that the ray paths have in each 
cell of the velocity model (Figure 2) [1]. The matrix D is determined in 
step 1 using ray tracing technique. S is a vector of velocity model and 
will be estimated numerically.

Source’s location (m) Method to calculate initial guess for 
the steepest descent optimisation 0 1,000 2,000 3,000 4,000 

O�set (m) 

125 4 2 4 3 2 
Geometrical 

137.5 2 3 3 2 2 
150 0 1 2 1 0 

Least-squares regression 

162.5 0 1 1 1 0 
175 0 0 0 1 1 

187.5 0 1 2 1 1 
200 0 1 1 0 1 

212.5 0 1 1 1 1 
225 0 1 1 1 0 

237.5 1 1 1 1 1 

Table 2. Number of iterations of angle estimation procedure with acceptable error ±3 m around receiver’s location

Figure 5. Input gathering in nine cell model (j = l,9) [1].

V1 V2 V3

V4 V5 V6

V7b V8b V9b

V7a V8a V9a

Source Receiver

�� �� �� t4

+ + + + +
d₁ d₂ d₅ d₈ d₉ d₆ d₃
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= Σ = Σ
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To solve S in Equation 10, normally the 
least-squares method is applied. However, a 
better way is to use the conjugate gradient 
(CG) method due to the nature of faster 
computational complexity. CG is the most 
popular iterative method for solving large 
systems of linear equations like Equation 9 
because CG has a time complexity of O  ,
whereas the steepest descent has a time 
complexity of O(mk). Both algorithms have 
a space complexity of O(m), where k is the 
spectral condition number of matrix D, and m 
is the number of non-zero entries in the matrix 
[5]. Upon application of a few CG iterations, 
the velocity model is updated to an optimised 
model much closer to the actual one.

3. Synthetic data verification

A synthetic velocity model (Figure 7) is 
used to verify the effectiveness of the method. 
The model is created in depth domain and 
contains ten seismic reflectors with an 
anticline in the high velocity region. There is 
also a fault-like structure in the deeper region 
of the model, which is an interesting object for 
the tomographic inversion study.

The optimisation procedure is applied 
to our true velocity model to estimate the 
shooting angle for each source-receiver pair 
and obtain the true travel time information, 
which is then used as the reference, or input, 
of iterative procedure. 

The acquisition geometry was defined 
by a system composed of 207 sources (with 
a source interval of 25 m) and 10 receivers for 
each source (with a receiver interval of 12.5 m); 
all were placed on the water surface. Calculated 
travel times of all source-receiver pairs are 
used as reference data in tomographic inverse 
procedure. The inversion adopts the simple 
and powerful conjugate gradient method 
as mentioned in section 2.2. We use a strong 
smooth version of the true velocity model as 
the initial model for this step. The results of 
tomographic inversion test are presented in 
Figure 9.

Figure 6. Moveout trajectory for a reflector: an autopicker will determine the t values (i = l, 4) [1] .

Figure 7. True velocity model with picked horizons (acoustic discontinuities).

Figure 8. Ray tracing by Runge-Kutta method with a picked reflector.
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Tomographic model after 5 iterations
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Tomographic model after 20 iterations
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Tomographic model after 10 iterations
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Figure 9. Results of tomographic inverse process. a) True velocity model; b) Initial model; c) Estimated tomographic model after 5 iterations; d) Estimated tomographic model after 10 
iterations; e) Estimated tomographic model after 20 iterations; f ) Estimated tomographic model after 30 iterations.

Model RMSE (m/s) Average relative error of velocity model (%)  

Initial model  370.6 18.15 

Estimated model after 5 CG iterations 219.6 10.75 

Estimated model after 10 CG iterations 176.4 8.65 

Estimated model after 20 CG iterations 156.1 7.65 

Estimated model after 30 CG iterations 152.9 7.5 

Table 3. Root-mean-square error of velocity models
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The algorithm starts from an over-smoothed model 
(Figure 9b) without any clear seismic features, and 
eventually converges to a much more realistic result. 
Shallow zone and high velocity section are recovered 
after only 5 CG iterations. By increasing the number 
of CG iterations, deeper layers of velocity model are 
also inverted more and more accurately. As seen in 
Figure 9d, the interesting fault-like structure is quickly 
recovered after 10 iterations. The algorithm accuracy 
can be estimated by calculating the root-mean-square 
error (RMSE). The smaller the RMSE, the closer the fit of 
estimated model to the true data. The RMSEs are shown 
in Table 3.

4. Field data application

We now present the application of our tomographic 
inverse algorithm to a 2D data set from a field offshore 
Vietnam. This data set is processed and interpreted by 
a geophysical team of the Vietnam Petroleum Institute 
(VPI). The basic processing steps are shown in Figure 10.

A distinct difference from the modelling case is that the 
data (velocity fields) in the synthetic modelling is already 
in the depth domain, while in the case of field application, 
the input data (seismic data, picked RMS velocity and 
picked horizons) is only in the time domain. Thus, there’s 
a need to convert the input (picked horizons) from time 
to depth domain during the iterative procedure, which is 

Figure 10. Basic processing steps.
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Figure 11. A seismic line used in the study with picked horizons and well location.

Figure 12. Tomographic velocity model overlaid with seismic data.
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not at a true depth but a depth depending on the current 
velocity model. By minimising the travel time residual, we 
hope the depths also converge to the true solution. Thus, 
beside the CG iterations to improve the velocity model 
to perform ray tracing with the current seismic-depth-
domain horizons, there will be an outer loop to update 
the velocity model in depth with the updated depth of 
the horizons (Figure 1). Other than that, the inversion 
proceeds similarly to the synthetic modelling case. 

Figure 11 shows stacked data with picked horizons 
and well location. From the process of applying algorithms 
to synthetic data we found that the more horizons are 
picked, the better the result of tomographic inversion 
will be. However, using more horizons also means more 
computational cost, especially for field data, where the 
number of shot-receiver pairs is usually a lot. In this work, 
we picked 7 horizons, among which 3 located above, 1 

Figure 13. Comparison of CDP gatherings after PSTM with (a, b) handpicked velocity and (c, d) tomographic velocity.

(a) (c)

(b) (d)
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located below and 3 went through the region with well 
measurement data.

Once the velocity model is inverted by SeisT, it will 
be overlaid by stack section; then the velocity change as 
well as anomaly possibly associated with hydrocarbon 
accumulation can be observed as in Figure 12. In this 
particular seismic line, the seismic velocity model has been 
successfully inverted by the proposed SeisT algorithm, and 
the velocity surrounding the well location (at the diapir), 

where the gas was discovered, tends to be smaller than 
laterally surrounding area.    

Unlike the case of synthetic model, for field data, 
we do not have an “absolutely” true velocity model to 
compare our tomographic results. So, we must try other 
ways to check if our algorithm works properly. In this 
work, we demonstrate two different methods for quality 
control (QC). One is using the estimated velocity model as 
the input for Kirchhoff Pre-Stack Time Migration (PSTM); 
its output is expected to contain flatten seismic events 
in the CDP gatherings (Figure 13). The other method is 
to compare the inverse model with the well data located 
nearby the studied line. 

The average residuals of the estimated models are 
calculated as an additional verifying method. With the 
residual defined as the differences between the travel 
times estimated by the ray tracing method and the 

Figure 14. Comparison of tomographic velocity with (a) VSP velocity from well data  and (b) commercial software.
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true travel times (horizons picked), the average 
residuals after CG iterations are calculated and 
shown in Table 4.

We can see from Table 4 that, when CG 
iteration increases, the average residual of the 
estimated model decreases more and more 
slowly. This phenomenon can be explained by the 
fact that, as the average residual gets closer to the 
sampling interval, it should be much harder for 
the optimisation routine to improve the results.

The location of picked horizons in the depth 
domain is calculated using a picked velocity 
model. This means if the velocity model is updated 
by tomographic inversion, the horizons’ location 
should also be recalculated. For this reason, we 
have made several velocity modelling iterations, 
in each of which the location of the horizons is 

defined using the velocity model estimated in the previous one. 
The improvement of this iterative procedure is shown in Figure 
14a.

An independent check of the tomographic inversion result 
can be achieved by comparing to VSP velocity measurement of 
a local well (Figure 14); the well location is indicated in Figure 11. 
The tomographic inverted velocity is slightly higher than well VSP 
velocity, so the result is encouraging. A tomographic inversion 
result using a commercial software is also displayed in Figure 
14b. The commercial software model (based on the grid-tomo 
algorithm) is better than ours in terms of frequency content - a 
room for our future improvements. However, our algorithm gives 
a better matched velocity estimation with the VSP velocity in the 
slow-velocity-anomaly zone (1,500 - 2,500 m).

We would also like to investigate the effect of “well calibration” 
as often performed in the industry. Effectively, the velocity model 
used to convert the horizons from time to depth domain has 

Figure 15. Comparison of tomographic velocity using well calibration with 
well data.
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Figure 16. RTM images using (a) handpicked velocity V3 and (b) tomographic velocity.
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been calibrated to get closer to the well VSP velocity 
(at the well the model is matched with well data). The 
final tomographic inversion velocity at the well matches 
closely with the low frequency component (i.e. the trend) 
of the VSP velocity (Figure 15). 

5. Application of tomographic inversion results

As an application of the tomographic velocity results, 
we used the Reverse Time Migration (RTM) to perform 
seismic depth imaging which can (hopefully) illustrate the 
improvements of the tomographic inversion compared to 
the handpicked velocity model. As shown in Figure 16b, 
seismic events in RTM image using tomographic velocity 
contain less artifacts than those using the handpicked 
velocity model (V3) in Figure 16a. The result in Figure 16b 
is partly comparable to the Kirchhoff migration result 
(Figure 11).

6. Discussion

The accuracy of horizon picking plays a significant 
role in ray-based reflection travel time tomography since 
the picked horizons will act as the reference arrival times 
for the inversion process. These horizons (after being 
converted to the depth domain) are also used in the 
ray tracing procedure, where arrival time of a particular 
source-receiver pair is estimated for the current version 
of the velocity model. This estimated arrival time is then 
compared to the reference one to optimise our velocity 
model. Thus, the quality of the ray-based reflection 
travel time tomography depends much on the quality 
of horizon picking, which is now performed manually. 
One way to improve the quality of horizon picking is to 
use auto-picking functions of software such as Kingdom, 
Landmark, and Petrel, etc. A more advanced auto-picking 
version can be obtained from PaleoScan software [6], 
which can simultaneously pick many horizons in a 
chronological order.  Auto-picking can improve not only 
the quality but also the quantity of horizon picking in an 
efficiently short amount of time.  

In the case where seismic reflectors are not evident 
such as in the zone of basement or salt/mud diapirs, seismic 
reflection travel time tomography might hit troubles. 
Therefore, a different approach must be considered, 
such as “common focus point (CFP) tomography” [7] or 
diffraction-based tomography [8].

During the implementation of the tomography 
algorithm, it is noted that, the system of equations in 

(Equation 9) can only be solvable (in the least-squares 
sense) if the number of equations is greater than 
the number of unknowns. In general, the number of 
equations is equal to the number of source-receiver 
pairs times the number of horizons; and the number of 
unknowns equals to the number of grids in the velocity 
model. If the above condition is not satisfied (which is 
usually the case), additional constraints must be applied 
to solve this system of equations. A common constraint 
is using the smoothing filter to correlate nearby points. 
Other techniques such as constraint by “dip/azimuth” or 
“shaping regularisation” [9] can be considered too. Even 
with constraints, a non-uniqueness condition for the 
solution is possible and an accurate initial velocity model 
will be an important factor that strongly affects the quality 
of the final optimised model. An accurate initial model 
also greatly affects the speed of solving system (Equation 
9) (less time to converge). For the field example, we use 
the smooth version of the hand-picked velocity (V3) as 
the initial model. 

In general, the development of the reflection 
tomography technology by the VPI team has achieved 
several accomplishments:

- For the modelling data, the tomographic result 
has recovered some seismic characteristics in the original 
velocity model such as layering and fault features; 

- In the field data application, the inverse 
tomographic velocity produces more flattened events on 
CDP gatherings than the hand-picked one after pre-stack 
migration; 

- It can also be reliably used as the velocity model 
for the RTM module with improvement over artifacts, 
compared to the result using hand-picked velocity model. 

However, there are still shortcomings such as the 
matching with the well data. The slight mismatch 
between the tomographic inversion and well VSP velocity 
could be attributed by (over-) smoothing of the velocity 
field, insufficient number of horizons, and/or the lack of 
modelling for other physical phenomenon modelling 
(anisotropy, Q effect…), which can be overcome partially 
by using the well calibration method.

7. Conclusions

In this work, the development of travel time reflection 
tomography technology at the VPI is demonstrated 
through synthetic and field results. Many issues faced by 
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the team during the study and development of ray-based 
reflection travel time tomography have been discussed. 
We indicate that the quality of final tomographic results 
depends on many factors, especially the accuracy of the 
initial velocity model and the quality of horizon picking. 
We can reach further improvements by considering other 
constraint techniques (smoothing) and/or modelling 
more complicated physically, such as modelling Q and/
or anisotropy effect. Although in this iteration of the 
technology, a basic tomographic inversion software and 
workflow are developed, its completion has highlighted 
some important insight of the process, including:

- The necessary algorithm, software module, and 
workflow for understanding the core techniques (ray 
tracing, optimisation, inversion) used in the tomographic 
inversion; 

- The implementation of reflection tomography 
method to invert a better acoustic velocity model 
(compared to the normal handpick flow).

The basic model will need further development 
including more complicated physical models, such as 
Q, anisotropic tomography. More advanced versions of 
velocity model building such as 3D tomography or full 
waveform inversion are also among the future goals.
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1. Introduction

The designs of development plans for oil and gas 
fields are based on the definition of a drilling schedule. 
Development wells are drilled to (a) reach and support 
a production plateau; (b) maximise the hydrocarbon re-
covery; and (c) provide injection for pressure support or 
secondary recovery.
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OF HORIZONTAL WELLS WITH A RESERVOIR MODEL  
FOR A FIELD DEVELOPMENT PLAN 
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The task addressed in this work is a full population 
of the field with as many horizontal wells as needed to 
get the maximum possible production rate and optimal 
desired production that is maintained for several years. 
This study should be distinguished from other studies 
available in the literature that are focused on production 
optimisation with a minimum number of well locations 
yielding a high recovery per well. The well population in 
this work is based on a regular pattern rather than selec-
tion of optimal random locations. The evaluation of every 
possible location on a regular pattern was found to be 
a frequent request from field operators because it suits 
their local and economic circumstances. Interference be-

Summary

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical 
model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require 
a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. 
However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern.

One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain 
standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and 
spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible 
under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly 
reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a 
computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, 
development area boundaries, and reservoir geological structure features.

Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and 
avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells 
may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning 
module would be a useful tool for commercial simulation software to ease engineers' tasks.
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tween wells is implied in such conditions. Every location 
needs to be filtered against several restrictions, and the 
optimal vertical planning of the horizontal section needs 
to be defined. Doing this task individually for hundreds 
of wells is highly time consuming, thus unpractical, and 
can become impossible under time restraints.

This problem is solved by developing a programme 
that automates the subject task, issuing the simulator 
keywords with all the items needed for the section of a 
simulator data file referring to new wells position and 
production. In this study, a commercial black oil reservoir 
simulation software was used.

The next variable to be defined is the schedule on 
which each well is to be drilled. The programme contrib-
utes to this task by issuing a drilling queue. The output of 
the programme is but a starting point from which many lo-
cations will be depurated, and the drilling schedule may be 
optimised in subsequent simulation runs.

2. Literature review

There are a few software packages that can provide 
new well locations for field development plan. The best 
approach is performed by the Plan Opt module in the 
simulator. However, this application is specific for vertical 
wells. A guided decision software is another option, but it 
specifies not being accurate for horizontal wells.

There are a number of studies concerning finding well 
locations. These studies focus on a different goal though, 
which is to optimise the number of wells by carefully se-
lecting the best locations. Hazlett and Babu [1] provide an 
analytic solution of Babu and Odeh [2] for horizontal well 
productivity that is used together with a search method 
to find optimal well locations. The solution of Babu and 
Odeh for horizontal wells in a box of homogeneous prop-
erties is generalised for heterogeneous media. This equa-
tion is useful for the computation of productivity index.

Cullick et al. [3] present a process for simultaneously 
determining many optimal locations for producing and 
injecting wells. The optimisation is performed by a soft-
ware system that executes the reservoir simulator, an eco-
nomic analysis, and the optimiser. A set of well targets is 
generated on a conventional reservoir model by ranking 
its properties.

In a study by Cottini-Loureiro and Araujo, the opti-
mal well location is achieved by combining the methods 
of multiple realisation approach and quality map [4]. The 

multiple realisation approach is based on identifying key 
parameters of the reservoir and modelling of the reservoir 
response for a combination of parameters. The quality 
map is a 2D representation of the quality of all the area 
of the reservoir in terms of production. It is generated by 
running a flow simulator multiple times, varying the po-
sition of a single well in each run until the entire grid is 
covered.

None of the papers found in the literature refers to a 
regular pattern development, which has been frequently 
requested by field operators because it is suitable for local 
and economic circumstances. Another issue is that previ-
ous studies generally propose the use of software that is 
not readily available.

3. Methodology

A step-by-step procedure of the proposed technique 
follows.

3.1. Oil column index map

The first criterion used to evaluate the well location 
spatially is the areal oil in place, volume of oil in place per 
unit surface, oil column index, or the Hu × Φ × So quan-
tity. This number can be expressed in units of thickness or 
commonly in Rbo/acre through a conversion factor of 1 ft 
= 7757.4630 Rbo/acre.

There are several ways of evaluating this quantity de-
pending on the software used for the geological model. In 
the example case, a script was written to calculate a map 
of Hu × Φ × So from the files of the simulation model be-
cause the geological model was not provided.

An oil column index map provides a view of the 
density of oil accumulation over all the area of the field. 
Best areas can be easily spotted so as to locate vertical or 
horizontal wells assuming that the vertical permeability is 
good enough to drain each sector of the field with a single 
horizontal branch.

In the case that the reservoir is divided totally or par-
tially in the vertical direction by horizontal intercalations 
or barriers, Hu × Φ × So needs to be calculated for each 
division. Also, each of those divisions will be processed by 
the well location programme.

3.2. Programme input and output

The developed programme locates as many horizon-
tal wells as possible in a field, on the basis of a regular rect-
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angular pattern. The total oil in place for the drainage area 
of each location is added and compared with a minimum 
value. Locations under the minimum mean theoretically 
nonproductive wells and are discarded, together with 
those falling in restricted areas and other obstacles. Find-
ing the maximum possible number of wells has the objec-
tive of achieving the maximum production and support-
ing it during a number of years.

Within each location, the well position is vertically op-
timised, i.e., the well will be connected to the layer that 
gives the higher productivity index and respects a mini-
mum standoff from the water level.

As every potential location is covered with the regular 
pattern, the additional information provided by the pro-
gramme is the order in which the wells will be drilled. The 
input and output are referred to the commercial simulator 
model.

- Input data

 + Grid dimensions;

 + Grid file (geometry);

 + Properties;

 + Sizes of rectangular pattern (drainage area);

 + Length of horizontal well;

 + Orientation of the wells (X or Y);

 + Co-ordinates I, J, K of existing well connections;

 + Co-ordinates I, J, K of obstacles or forbidden 
locations;

 + Co-ordinates I, J, K of development area;

 + Map of Rbo/acre (bi dimensional grid).

Keywords are those corresponding to the specific 
simulator.

The dimensions of the rectangular pattern are usually 
established based on the field operator's policy on mini-
mum spacing and drainage area. If this is not the case, an 
initial value can be given by experience in similar fields. 
The length of the horizontal well is a matter of drilling fea-
sibility.

The orientation of the wells, along the X or Y axis in this 
programme, is a parameter that has to be chosen accord-
ing to the main flow direction of the reservoir. In isotropic 
reservoirs, it will be a sensitivity parameter. Sensitivity can 
also be run on drainage area and horizontal length.

- Output data

This information is for new wells in a format suitable 
for the reservoir simulation software's Schedule section:

 + Wellhead specification;

 + Well connections;

 + Well production control;

 + Drilling order.

Keywords are those corresponding to the specific 
simulator.

3.3. Processing the results

Once the output of the programme is obtained, the 
keywords are added to the Schedule section of the model, 
and a forecast is run. A field or group target is imposed.

The new wells are all closed in the well completion 
data keyword, and they will be opened to production as 
soon as the field cannot meet its target in the order they 
are listed on the drilling queue list. The main results of 
such run are:

- Achievement of target rate;

- Duration of production plateau;

- Increment of oil cumulative for the field in the 
forecasted period;

- Number of wells with effective production.

3.4. Result evaluation

The conditions for which the wells were located in 
the original pattern may have changed by the moment 
many of them are opened because of the water influx and 
other fluid movement. The arrays Sw and Hu × Φ × So can 
be calculated at a later time (i.e., when the main regions 
of the reservoir are flooded), and the programme will be 
run again.

In this case, besides using the mentioned arrays as 
input, the new located wells that are considered good in 
Step 3 are included in the existing well list. The purpose 
of this additional run is to correct the vertical location of 
wells that can perform better if drilled higher at later time.

This step may not be necessary in fields where satura-
tion change is not important. On the other extreme, this 
step can be performed more than once.
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3.5. Test runs

Repeating Step 3 with a smaller number of wells can 
significantly modify the production of the wells that are 
kept. Successive runs of Step 3, and eventually Step 4, will 
define which wells are required to achieve the targets for 
field development.

3.6. Application and report

The wells defined in Step 5 can be used for forecasts 
at lower plateau targets, usually supporting the plateau 
production longer time.

4. Computer programme

The aim of the developed programme is to fully popu-
late a field with horizontal wells following a regular rect-
angular pattern.

A defined surface of the field is totally covered, with 
exception of locations that fall into:

- Existing wells;

- Non-productive areas;

- Obstacles such as faults;

- Areas restricted by administrative or other reasons.

This programme can be repeated with several alter-
natives, e.g. well orientation (X or Y), spacing, and horizon-
tal length. From each output, a forecast can be run to find 
the maximum production and support it during a number 
of years.

It is not the objective of the programme to give the 
optimal solution for developing the field. As mentioned 
in the previous section, that solution can be found only by 
loading several alternative outputs from the programme 
into the simulation model and comparing the results.

The programme described is aimed and restricted to 
use with the referred commercial software grid and solu-
tion files as input. Also, the output from the programme 
consists of files that can directly be included in the Sched-
ule section of the reservoir simulation software's data file. 
However, it is expected that the programme can be modi-
fied to be used for other reservoir simulators as well.

4.1. Programme input

The version of the programme that is ready to use has 
been developed for application on a specific field with a 
single characteristic: high-permeability channels driving 
water.

The user will prepare a text file containing the follow-
ing information in free format. This file is called the well in-
put file. An example of the well input file is provided in the 
Appendix. The data contained in that file are, line by line:

- I, J, K dimensions;

- Character string to fill each well completion data 
line after the K connections;

- Character string to fill each well production control 
line after the name of the well;

- Maximum and minimum I coordinates of 
development area; maximum and minimum J coordinates 
of development area; I and J sizes of rectangular drainage 
area; horizontal length; orientation code: 0 = X, 1 = Y;

- Characters of well name and initial number for 
wells;

- Character string to fill each WELSPECS line after the 
well coordinates.

From 7 to (Imax – Imin + 7) is Jmin(I), Jmax(I). These lines de-
fine the area where the wells are allowed. The next lines 
are I, J coordinates of connections of existing wells and 
other obstacles.

Other files required as input are:

- Permeability input file contains the array as 
extracted from the grid file of the commercial simulator, 
which is an input of the reservoir model (this input is 
specific for this version of the programme, and is used to 
avoid locating wells in the high-permeability channels);

- Z co-ordinates file contains the array as extracted 
from the grid file of commercial simulator, which is an 
input for the reservoir model (this specific array specifies 
the depths for each one of eight corners of each cell in the 
model);

- Connate water saturation input file contains an 
array of connate water saturation; it can be exported 
from a postprocessor module once the reservoir model is 
initialised;

- Current water saturation input file contains an 
array of water saturation at the start time for the forecast; 
it can be exported from the postprocessor module once 
the reservoir model has been run to the end;

- Transmissibility data in X and Y directions contains 
an array of horizontal transmissibility in the direction 
normal to well orientation; it can be exported from 
the postprocessor module once the reservoir model is 
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initialised (this input is specific for this version of the 
programme, which assumes that the wells having the 
highest normal transmissibility will have the highest 
productivity index);

- Oil column index data-contains a 2D (I, J) array of 
the variable oil column index = Hu × Φ × So in Rbo/acre; 
this variable has been calculated by multiplying the 
porosity (Φ) of each cell by its net thickness (Hu) and its oil 
saturation (So), and for each I and J, the value of Hu × Φ × 
So for each cell has been added for all the column from K = 
1 to K maximum (this can be made by means of a script in 
the postprocessor module or using a Fortran programme).

With all data files in the run directory, the programme 
can be run by opening the command window, position-
ing in the run directory, and typing HorWS, which is the 
name of the programme.

4.2. Programme workflow

The programme starts by reading the dimensions I, J, 
K of the model to allocate the input arrays. Once the ar-
rays have the correspondent dimensions, the input files 
are read. The mobile water saturation for each cell is cal-
culated as the difference between actual water saturation 
(Swat) and critical water saturation (Swcr). The location of the 
well inside each rectangular area of the pattern is defined 
symmetrically based on the sizes of area, well length, and 
orientation. As mentioned above, this version of the pro-
gramme looks for the high-permeability channels, of ap-
proximately 100 D, connecting the aquifer with the crest 
of the reservoir. Such channels consist of cells where per-
meability is greater than or equal to 100 D and where this 
value is constant vertically from K = 1 to K maximum. Cells 
in this condition are detected, so wells are avoided on 
these channels and at a distance of 5 cells from them. In a 
more general version, this definition can be made outside 
the programme. Then, the co-ordinates of the channel 
cells can be included in the list of obstacles where drilling 
is forbidden.

The regular pattern is covered starting from the cor-
ner of the development area having the lowest I and J co-
ordinates and proceeding along the J axis. Each location 
is filtered from obstacles (e.g. wells and channels). If there 
is an old well in the rectangular area of the location, then 
the programme goes to the next location. The summa-
tion of the oil column index is made for all the cells con-
nected to the well; if it is zero, the location is discarded. 
This value will be used to classify the wells according to 

the potential oil they can recover. To define the depth to 
drill the horizontal section of the well, the first criterion is 
to keep a standoff above mobile water. Starting from the 
uppermost layer and along the well length, the mobile 
water saturation is compared to a reference value of 0.15. 
All layers below the one having mobile water saturation 
greater than or equal to the reference are discarded for 
completion, plus two layers as a standoff from water level. 
This is under the assumption that mobile water saturation 
will increase monotonically downwards. From the upper-
most layer filtered as described above up to Layer 1, the 
normal transmissibilities are added along the well length. 
Then, the well is completed in the layer having the highest 
transmissibility summation, as it is assumed that it will cor-
respond to the highest productivity index. Note that the 
well is completed in a single layer, which can depart from 
horizontality. A minimum value of oil column index greater 
than zero can be used to the filter the locations based on a 
statistical analysis of the Rbo/acre map.

4.3. Programme output

All the wells that pass the filters are recorded in three 
output files:

- Well specification file which contains the 
specifications for each new well;

- Completion data file which contains the well 
completion specification for every connection of new 
wells;

- Well control file which contains the well production 
control standard specifications for each new well; the 
wells are specified as shut, and they will be opened 
automatically to attain the production targets by using 
the drilling queue keyword that is added to the file as 
described below.

A subroutine is used to assign, from the array of corner 
Z co-ordinates, the eight corners corresponding to each 
connected cell. The corresponding depths are averaged, 
and the deepest connection is selected as representative 
for each well. At this point, every potential location is cov-
ered with the regular pattern. The next step is to classify 
the wells to assign the order in which each will be opened. 
The first criterion is that the lowest wells will be produced 
earlier so as not to leave oil behind the advancing water.

Another subroutine called ORDEM sorts the wells by 
their representative depth in descending order. This sort-
ing is done by assigning to each well an order number 
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(vector NUM). The lowest well is assigned 1, and the high-
est well has the highest number.

The total number of wells is divided in three sets. Wells 
from each set are sorted according to their connected oil 
column index using the same subroutine. The keyword for 
drilling queue is added in the well control output file, and 
well names are added in the following order:

- Lower wells, sorted by decreasing oil column index;

- Medium wells, sorted by decreasing oil column 
index;

- Upper wells, sorted by decreasing oil column index.

The output files are then ready to be included in the 
simulator data file to make a forecast run. The method to 
make the best use of this programme consists of running 
it using different well spacing and orientations, then in-
cluding the files from those alternatives in different data 
files and making the respective forecast runs. The opening 
queue can be modified by hand using the knowledge of 
facts outside the scope of this work.

Even after the wells have been selected through sev-
eral filters, the result of the simulation runs will point out 
some wells with non-significant production that can be 
further discarded.

The auxiliary file screenoutput.txt is used to anal-
yse the internal flow of the programme and can later be 
omitted. Figure 1 shows a workflow diagram of the pro-
gramme.

5. Application example

5.1. Problem statement

Reservoir E-1 is a sample exercise represented by a 31 
× 21 × 17 cells numerical model in the reservoir simula-
tion software. The average horizontal block dimension is 
120 × 120 m. There are multiple small sealing faults and 
shale zones scattered in the reservoir. Water aquifers are 
at the bottom and the edge of the reservoir. High-perme-
ability streaks are also present in the reservoir with a per-
meability magnitude of 30 D. There are five existing wells, 
both vertical and horizontal. The goal is to plan as many 
horizontal wells as needed to effectively produce the field 
to its maximum potential. The number of horizontal wells 
required could be up to 300 depending on the production 
need and well configuration. Manually placing this large 
number of wells is a tedious task and may involve many 
human errors. It becomes impossible under a certain time 
constraint and when a sensitivity study (considering dif-
ferent well plan scenarios) is required. Thus, the method 
described above was used for planning new horizontal 

Figure 1. Workflow diagram for the well planning programme.
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wells in the field. The following criteria were 
considered for this example:

- New wells are placed 100 m away 
from the high-permeability streaks;

- Only wells that meet the minimum 
total connected oil volume are output;

- New wells are placed in the layers 
with the highest transmissibility along 
the well length and above the water level, 
which is defined by input data;

- Either wells along the X or Y direction 
can be considered;

- Output can be imported to the 
simulation software in form of the 
keywords for well specification, well 
production control, well completion, and 
drilling queue.

5.2. Results

Figure 2 shows the E-1 new wells on a 
schematic area map.

A useful tool in the analysis of this run is 
the plot of oil cumulative per well (Figure 3).

Note that from the more than 400 wells 
located, half of them have a non-significant 
cumulative and can be discarded. A crite-
rion for discarding a well can be producing 
less than 3% of total field increment in cu-
mulative.

Figure 4 shows the new wells on and 
oil column index map. All new wells are at 
good distance (100 m) away from the high-
permeability streaks. Figure 5 is a cross 
section of an oil saturation map showing 
the completion interval of three wells. The 
wells are well above the high water satura-
tion level. It should be noted that the pro-
gramme also compared the transmissibili-
ties of the layers above the water level and 
completed the well in the layer with the 
highest transmissibility.

6. Other cases

6.1. Horizontal well in the Y direction

In this case, the azimuth of the well Figure 4. Oil column index map showing the new well locations in reservoir E-1.

Figure 3. Oil cumulative forecasted for new wells in regular pattern.

Figure 2. Area map showing the new well locations in reservoir E-1.
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is in the Y direction instead of the X direction. 
The dimensions of the well drainage area were 
switched (the edge along the X axis is now 
along the Y axis and vice versa). Figure 6 shows 
the resultant new wells oriented along the Y 
directions in a permeability map. Similar to the 
case of new well in an X direction, all criteria 
were also met in this case.

6.2. Shorter well length

In this case, the maximum length of the 
new wells was set to be shorter than previous 
cases (reduced to 350 ft from 700 ft). The drain-
age area was reduced, and the new wells were 
closer to one another. Figure 7 shows the per-
meability map with the resulting wells.

7. Assumptions and limitations

The workflow described above is valid in 
the following assumptions and limitations:

- The cost of drilling wells has secondary 
incidence in the economy of the project. This is 
valid in present circumstances in many locations, 
as clients require placing a large number of wells 
to get high production even when interference 
will occur;

- The cells in the area where the wells will 
be planned are square and have homogeneous 
size;

- The thickness of all layers is similar in this 
area;

- The average thickness of two layers is a 
valid standoff from water;

- The horizontal transmissibility is defining 
the well's productivity index;

- The wells will follow the layers even if the 
layer has high dip;

- Mobile water saturation increases 
monotonically with depth;

- Each well will be able to drain all the 
volume contained in its drainage area, meaning 
horizontal barriers are irrelevant.

The theoretical calculation of the productiv-
ity index of a horizontal well is a complex prob-
lem which some authors (Hazlett and Babu [1], 

Figure 5. Cross section of oil saturation map showing the new wells for reservoir E-1.

Figure 6. New horizontal well in the Y direction for reservoir E-1.

Figure 7. Permeability map showing the new wells with shorter length in reservoir E-1.
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Babu and Odeh [2]) have attempted to solve. The found 
correlations have given poor matches with the model re-
sults, so the transmissibility was adopted as a criterion in-
stead of productivity index for the sake of simplicity.

8. Improvements and generalisation

The present version of the programme was created to 
meet the requirements of developing a specific field, but 
it can be applied to any case for which the given assump-
tions are valid. It still can be easily adapted for other cases.

However, there are some improvements, clearly fore-
seen while developing the programme, which are being 
worked out:

- Using a standoff given in depth, rather than a 
number of layers;

- Calculating the productivity index of the well using 
the correlation of Babu and Odeh [2] or similar;

- Using productivity index as a criterion for qualifying 
the wells rather than transmissibility;

- Using productivity index to rank the wells in the 
opening queue;

- Using all the volume of the well drainage area as 
a criterion for qualifying wells (assuming that the vertical 
barriers along the axis of the well are not continuous or 
significant);

- Giving an alternative drilling order for the wells 
based on the number of available rigs and a logical path 
of the rigs along the field;

- Detaching the module for defining the high-
permeability channels as a separate programme;

- Giving a special treatment to faults, as they can be 
considered obstacles for drilling.

A further step will be to generalise the programme to 
cover cases where the above assumptions are not valid:

- Using geometric coordinates X, Y, Z rather than 
grid coordinates I, J, K;

- Defining the wells as horizontal even in high dip 
layers (thus not following the layer);

- Using any orientation for the wells besides those 
parallel to the X or Y axis;

- Input from map files instead of simulator files;

- Output in geometric co-ordinates X, Y, Z besides 
co-ordinates I, J, K.

9. Conclusions

The new method helps to save significant working 
hours and avoid human errors, especially when many de-
velopment scenarios need to be considered. A large res-
ervoir with hundreds of wells may have infinite possible 
solutions; this approach has the aim of giving the most 
significant. A horizontal well planning module would be 
a useful tool for commercial simulation software to ease 
engineers' tasks.

Nomenclature

Hu: Net thickness

So: Oil saturation

Swat: Water saturation array

Swcr: Critical water saturation array

Φ: Porosity
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SI Metric Conversion Factors

bbl × 1.589873 × 10-1 = m3

ft × 3.048 × 10-1† = m

ft3 × 2.831685 × 10-2 = m3

Stbo/Acre × 25451.2 = 1 m

† Conversion factor is exact
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APPENDIX

Programme Code

PROGRAM WellsNew7

DIMENSION IPO(:,:),PERM(:,:,:),STBA
(:,:),SWC(:,:,:),SW09(:,:,:)

DIMENSION DSW(:,:,:),TRAN(:,:,:),CH
ANL(:,:),IPO2(:,:)

DIMENSION LIMJL(:),LIMJM(:)

DIMENSION ZCORN(:)

DIMENSION ZM(640),TRM(640),OIP(640)

CHARACTER WEL*2, 
COMPLET*64,GRU*5,SPEC*17, CONPROD*64

INTEGER LC8(8), NE(640),NUM(640)

N=1

OPEN (1,FILE='Perm.txt',ERR=7)

N=2

OPEN (2,FILE='welinpu.txt',ERR=7)

N=3

OPEN (3,FILE='compnew7.txt',ERR=7)

PRINT *,N

WRITE(10,*,ERR=8)N

N=4

OPEN (4,FILE='stboacre.inc',ERR=7)

PRINT *,N

WRITE(10,*,ERR=8)N

N=5

OPEN (5,FILE='wspecnew7.txt',ERR=7)

PRINT *,N

WRITE(10,*,ERR=8)N

N=7

OPEN (6,FILE='Swc.txt',ERR=7)

PRINT *,N

N=8

OPEN (7,FILE='Sw09.txt',ERR=7)

PRINT *,N

N=9

OPEN (8,FILE='tran.txt',ERR=7)

PRINT *,N

N=10

OPEN (9,FILE='wconprod7.txt',ERR=7)

PRINT *,N

N=11

OPEN (10,FILE='screenoutput.
txt',ERR=7)

PRINT *,N

N=12

OPEN (11,FILE='zcorn.txt',ERR=7)

* Dimensions of grid must be in in-
put file wel.txt. First line box.

READ(2,*,END=8,ERR=7) IM,JM,KM

PRINT *,IM,JM,KM

WRITE(10,*,ERR=8)IM,JM,KM

READ(2,12,END=8,ERR=7) COMPLET

PRINT *,COMPLET

WRITE(10,*,ERR=8)COMPLET

READ(2,12,END=8,ERR=7) CONPROD

PRINT *,CONPROD

WRITE(10,*,ERR=8)COMPLET

READ(2,*,END=8,ERR=7) IPMIN,IPMX,JP
MIN,JPMX,NCRI,NCRJ,LEN,NOR

PRINT *,IPMIN,IPMX,JPMIN,JPMX,NCRI,
NCRJ,LEN,NOR

WRITE(10,*,ERR=8)IPMIN,IPMX,JPMIN,J
PMX,NCRI,NCRJ,LEN,NOR

READ(2,*,END=8,ERR=7) WEL,NEW,KMAX

PRINT *,WEL,NEW

WRITE(10,*,ERR=8)WEL,NEW

READ(2,28,END=8,ERR=7) GRU,SPEC

PRINT *,GRU,SPEC

WRITE(10,*,ERR=8)GRU,SPEC

PRINT *,'FILE WEL.TXT READ'

WRITE(10,*,ERR=8)'FILE WEL.TXT 
READ'
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* Define position of horizontal 
well of length LEN in pattern NCRIxN-
CRJ

* Orientation of horizontal well X: 
NOR=0; Y: NOR=1

* Co-ordinates of the well

IW=(NCRI-LEN*(1-NOR))/2

JW=(NCRJ-LEN*NOR)/2

* Co-ordiantes of the well + 
Lenghth - 1

IWF=IW+(LEN-1)*(1-NOR)

JWF=JW+(LEN-1)*NOR

PRINT *,IW,IWF,JW,JWF

ALLOCATE (IPO(IM,JM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in IPO'

ALLOCATE (IPO2(IM,JM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in IPO2'

ALLOCATE (STBA(IM,JM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in STBA'

ALLOCATE 
(PERM(IM,JM,KM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in PERM'

ALLOCATE (SWC(IM,JM,KM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in SWC'

ALLOCATE 
(SW09(IM,JM,KM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in SW09'

ALLOCATE (DSW(IM,JM,KM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in DSW'

ALLOCATE 
(TRAN(IM,JM,KM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 

error in TRAN'

ALLOCATE (CHANL(IM,JM),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in CHANL'

ALLOCATE (LIMJL(IPMX),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in LIMJL'

ALLOCATE (LIMJM(IPMX),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'allocation 
error in LIMJM'

IM1= IM+1

JM1=JM+1

MZCORN=8*IM*JM*KM

ALLOCATE (ZCORN(MZCORN),STAT=MALLOC)

IF(MALLOC.NE.0) PRINT *,'could not 
allocate ZCORN'

READ(11,*,END=8,ERR=7) ZCORN

DO I=IPMIN,IPMX

READ(2,*,END=8,ERR=7) 
LI,LIMJL(LI),LIMJM(LI)

END DO

DO J=1,JM

DO I=1,IM

CHANL(I,J)=0

IPO(I,J)=0

IPO2(I,J)=0

END DO

END DO

* Reads PERMsity array in input 
PERM.txt. First line PERM

* READ(1,*,END=8,ERR=7) ABC

* PRINT *,ABC

READ(1,*,END=8,ERR=7) PERM

PRINT *,N

WRITE(10,*,ERR=8)N

PRINT *,PERM(6,6,8)

N=6
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READ(4,*,END=8,ERR=7) STBA

PRINT *,N

WRITE(10,*,ERR=8)N

N=7

READ(6,*,END=8,ERR=7) SWC

N=8

PRINT *,N

WRITE(10,*,ERR=8)N

READ(7,*,END=8,ERR=7) SW09

N=9

PRINT *,N

WRITE(10,*,ERR=8)N

READ(8,*,END=8,ERR=7) TRAN

N=10

PRINT *,N

WRITE(10,*,ERR=8)N

DO K=1,KM

DO J=1,JM

DO I=1,IM

DSW(I,J,K)=SW09(I,J,K)-SWC(I,J,K)

END DO

END DO

END DO

PRINT *,'DSW OF 1ST CELL', SW09(6,6
,6),SWC(6,6,6),DSW(6,6,6)

WRITE(10,*,ERR=8)'DSW OF 1ST 
CELL',DSW(6,6,6)

* M1=0 index to start new line; 
M1=1 to close a line

* Defining current well locations

DO L=1,5120

READ(2,*,END=45,ERR=7) IP, JP

IPO(IP,JP)=1

END DO

45 CONTINUE

* Defining region within.5 km of 

high permeability channel

PRINT*,'CHANNEL VALUE',CHANL(2,3)

WRITE(10,*,ERR=8)'CHANNEL 
VALUE',CHANL(2,3)

DO IH=IPMIN,IPMX

DO JH=JPMIN,JPMX

CI=0

DO 30 KH=1,24

IF (PERM(IH,JH,KH).EQ.KMAX) THEN

CI=1

ELSE

CI=0

ENDIF

30 CONTINUE

IF (CI.EQ.1) THEN

CHANL(IH,JH)=1

ENDIF

ENDDO

ENDDO

PRINT*,CHANL(45,45)

IS=1

JS=1

IE=1

JE=1

DIST=5

DO 29 IH=IPMIN,IPMX

DO JH=JPMIN,JPMX

IF (CHANL(IH,JH).EQ.1) THEN

IF (IH.LT.(IPMIN+DIST)) THEN

IS=IH

ELSE

IS=IH-DIST

ENDIF

IF (JH.LT.(JPMIN+DIST)) THEN

JS=JH
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ELSE

JS=JH-DIST

ENDIF

IF (IH.GT.(IPMX-DIST)) THEN

IE=IH

ELSE

IE=IH+DIST

ENDIF

IF (JH.GT.(JPMX-DIST)) THEN

JE=JH

ELSE

JE=JH+DIST

ENDIF

DO I=IS,IE

DO J=JS,JE

IPO2(I,J)=1

ENDDO

ENDDO

ENDIF

ENDDO

29 CONTINUE

DO I=1,IM

DO J=1,JM

WRITE(10,*,ERR=8)I,J,CHANL(I,J)

ENDDO

ENDDO

* DEFINING NEW WELL LOCATIONS

NWC=0

DO I=IPMIN,IPMX-NCRI,NCRI

DO J=LIMJL(I),LIMJM(I)-NCRJ,NCRJ

M1=0

K1=0

MAR=0

OP=0

I10=I+NCRI-1

J5=J+NCRJ-1

ZM(NWC+1)=0

* VERIFIES IF LOCATION IS OVER EX-
ISTING WELL

DO 32 IN=I,I10

DO 36 JN=J,J5

IF(IPO(IN,JN).EQ.1) THEN

GO TO 50

ENDIF

36 CONTINUE

32 CONTINUE

* SUMMATION OF OIL VOLUME OVER WELL 
LENGTH

38 DO 40 IN=I+IW,I+IWF

DO JN=J+JW,J+JWF

OP=OP+STBA(IN,JN)

END DO

40 CONTINUE

IF(OP.EQ.0) THEN

GO TO 50

ENDIF

NEW=NEW+1

DO 132 IN=I,I10

DO 136 JN=J,J5

IF(IPO2(IN,JN).EQ.1) THEN

GO TO 50

ENDIF

136 CONTINUE

132 CONTINUE

* FINDING THE LOWEST LAYER ABOVE 
LAYER WITH MAX. SW DIFFERENCE

K2=KM

KD=KM

DSWMAX=0.15

DO IN=I+IW,I+IWF

DO 41 JN=J+JW,J+JWF
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DO K=1,KD

IF(DSW(IN,JN,K).GE.DSWMAX) THEN

IF(K.GT.2)THEN

K2=K-2

GO TO 41

ELSE

GO TO 50

ENDIF

ENDIF

ENDDO

41 CONTINUE

ENDDO

* FINDING THE LAYER WITH MAX. TRANS.

K3=K2

TRANMAX=0

DO 26 K=K2,1,-1

TRANTOT=0

DO IN=I+IW,I+IWF

DO JN=J+JW,J+JWF

TRANTOT=TRAN(IN,JN,K)+TRANTOT

ENDDO

ENDDO

IF(TRANTOT.GT.TRANMAX) THEN

TRANMAX=TRANTOT

K3=K

* PRINT *,'TRANMAX',TRANMAX

ENDIF

26 CONTINUE

*WRITING OUTPUT TO FILES

IF(OP.GT.50000) THEN

TRANCOMP=0

SWCOMP=0

DO 22 IN=I+IW,I+IWF

DO 25 JN=J+JW,J+JWF

IF(STBA(IN,JN).GT.0) THEN

IF(TRANMAX.GT.0) THEN

IF(TRAN(IN,JN,K3).GT.0) THEN

TRANCOMP=TRAN(IN,JN,K3)

SWCOMP=SW09(IN,JN,K3)

WRITE(3,16,ERR=8)WEL,NEW,'H',IN,JN, 
K3,K3, COMPLET,TRANCOMP, SWCOMP

M1=1

ENDIF

ENDIF

ENDIF

CALL ZMED(I,J,K3,IM,JM,LC8)

SZ=0

DO L=1,8

M=LC8(L)

SZ=SZ+ZCORN(M)

END DO

SZ=SZ/8

IF(SZ.GT.ZM(NWC+1)) THEN

ZM(NWC+1)=SZ

ENDIF

25 CONTINUE

22 CONTINUE

IF(M1.EQ.1) THEN

WRITE(5,20,ERR=8)WEL,NEW,'H',GRU,I+
IW,J+JW,SPEC,OP,TRANMAX

WRITE(9,13,ERR=8)WEL,NEW,'H',CONPRO
D,OP,TRANMAX,ZM(NWC+1)

NWC=NWC+1

NE(NWC)=NEW

NUM(NWC)=NWC

OIP(NWC)=OP

TRM(NWC)=TRANMAX

ENDIF

ENDIF

N=9

50 CONTINUE
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END DO

END DO

WRITE(3,16,ERR=8)'/'

*Well classification by: 1) depth 
2) OIP in three sets

ION=1

CALL ORDEM(ZM,NUM,ION,NWC)

WRITE(9,16,ERR=8)'/'

WRITE(9,*,ERR=8)'QDRILL'

M1=NWC/3

* Lower Wells

ION=1

CALL ORDEM(OIP,NUM,ION,M1)

DO L=ION,M1

NM=NUM(L)

WRITE(9,20,ERR=8)WEL,NE(NM),'H'

END DO

WRITE(9,16,ERR=8)'/'

WRITE(9,*,ERR=8)'QDRILL'

* Medium Wells

ION=M1+1

M2=2*M1

CALL ORDEM(OIP,NUM,ION,M2)

DO L=ION,M2

NM=NUM(L)

WRITE(9,13,ERR=8)WEL,NE(NM),'H'

END DO

WRITE(9,16,ERR=8)'/'

WRITE(9,*,ERR=8)'QDRILL'

* Upper Wells

ION=M2+1

CALL ORDEM(OIP,NUM,ION,NWC)

DO L=ION,NWC

NM=NUM(L)

WRITE(9,13,ERR=8)WEL,NE(NM),'H'

END DO

WRITE(9,16,ERR=8)'/'

8 PRINT *,N,'FIN'

PRINT *,'TOTAL NO. OF WELL:',NWC

WRITE(10,*,ERR=8)'TOTAL NO. OF 
WELL:',NWC

WRITE(10,*,ERR=8)N,'FIN'

STOP

7 PRINT *,'File not opened'

WRITE(10,*,ERR=8)'File not opened'

16 FORMAT(A2,I3,A1, 
4I6,2XA64,F10.3,F10.4)

28 FORMAT(A5,A17)

20 FORMAT(A2,I3,A1,2XA5,2I6,2XA17,'
/',F10.0,F10.3)

12 FORMAT(A64)

13 FORMAT(A2,I3,A1, 
A40,F10.0,F10.3,F10.1)

5 CLOSE (1)

CLOSE (2)

CLOSE (3)

END

SUBROUTINE ZMED(I0,J0,K0,IMI,JMJ,L8)

INTEGER L8(8)

* For each cell:

* Corner 1 lower i lower j upper k 
i- j- k+

* Corner 2 higher i lower j upper k 
i+ j- k+

* Corner 3 lower i higher j upper k 
i- j+ k+

* Corner 4 higher i higher j upper 
k i+ j- k+

* Corner 5 lower i lower j down k 
i- j- k-

* Corner 6 higher i lower j down k 
i+ j- k-

* Corner 7 lower i higher j down k 
i- j+ k-
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* Corner 8 higher i higher j down k 
i+ j- k-

IJ4=4*IMI*JMJ

* to extract z co-ordinates for 
each corner, from ZCORN array, above 
convention

L8(2)=2*I0+4*IMI*((J0-
1)+2*JMJ*(K0-1))

L8(1)=L8(2)-1

L8(4)=2*I0+2*IMI*((2*J0-
1)+4*JMJ*(K0-1))

L8(3)=L8(4)-1

L8(5)=L8(1)+IJ4

L8(6)=L8(5)+1

L8(7)=L8(3)+IJ4

L8(8)=L8(7)+1

RETURN

END

* SUBROUTINE ORDEM orders a subset 
of wells through number NPO

* by descending values of vector 
Za. The subset starts at Juno, ends at 
LM.

* Vector NPO may initially have the 
numeral order (1,2,3,…) and is output

* having in the first place the 
well number having the  highest Za, 
and subsequently

* to the well having the lowest Za

SUBROUTINE ORDEM(ZA,NPO,JUNO,LM)

DIMENSION ZA(640)

INTEGER NPO(640)

ML=(LM+JUNO-1)/2

DO IA=JUNO,ML

ZMX=-1E32

ZMN=1E32

DO IB=IA,LM-IA+JUNO

IC=NPO(IB)

IF(ZA(IC).GT.ZMX) THEN

ZMX=ZA(IC)

IMAX=IB

ELSE

IF(ZA(IC).LT.ZMN) THEN

ZMN=ZA(IC)

IMIN=IB

ENDIF

ENDIF

END DO

*In each step places the well hav-
ing the highest value in subsequent 
order

* at the beginning, and the well 
having the lowest value at the end. 
Places

* are exchanged with wells in those 
positions.

* Reference is the well number at 
the original list.

NPOIMAX=NPO(IMAX)

NPO(IMAX)=NPO(IA)

NPO(IA)=NPOIMAX

NPOIMIN=NPO(IMIN)

NPO(IMIN)=NPO(LM+JUNO-IA)

NPO(LM+JUNO-IA)=NPOIMIN

END DO

RETURN

END
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1. Introduction

Many essential parameters to understand reservoir 
characteristics are derived from a series of core 
analysis, from core testing, routine core to special core 
analysis. The aim of this study is to find out a number of 
relevant relationships between different petrophysical 
parameters based on the core testing data to help predict 
permeability, pore size distribution and grain sorting for 
a reservoir. Nam Con Son basin (Figure 1) is the second 
largest hydrocarbon basin after Cuu Long basin, and 
the biggest natural gas producing basin in Vietnam. 
While oil production continually declines in Cuu Long, 
the exploration and production activities in Nam Con 

DEVELOPMENT OF HFU-BASED PERMEABILITY PREDICTION  MODELS 
USING CORE DATA FOR CHARACTERISATION OF A HETEROGENEOUS 
OLIGOCENE SAND IN THE NAM CON SON BASIN
Nguyen Van Hieu1, Nguyen Hong Minh1, Phan Ngoc Quoc1, Pham Huy Giao1,2 
1Vietnam Petroleum Institute (VPI)
2PetroVietnam University (PVU)
Email: hieunv@vpi.pvn.vn
https://doi.org/10.47800/PVJ.2021.10-03

Son play an important role for the oil and gas industry 
of the country. Unfortunately, the clastic reservoirs in 
this basin are often found heterogeneous, in particular 
the Oligocene sands, therefore finding good non-linear 
permeability prediction models is an important task.

In this study, core plugs were taken from conventional 
cores collected in Oligocene sandstone. Each core plug 
has 1.5'' diameter and approximately 2'' length. After the 
samples were trimmed to get the right cylinder shape, the 
cores were cleaned to remove any salt or hydrocarbon 
contents, and dried in a humidity oven for at least 48 hours 
at 60 oC and 40 %RH to preserve sensitive clay minerals. 
When the drying process was completed, the samples 
were stored in desiccators to avoid vapour absorption. 
Core testing including porosity, permeability, MICP and 
grain size measurements was conducted.

Summary

Core data by both routine and special core analysis are required to understand and predict reservoir petrophysical characteristics. In 
this research, a total number of 50 core plugs taken from an Oligocene sand in the Nam Con Son basin, offshore southern Vietnam, were 
tested in the core laboratory of the Vietnam Petroleum Institute (VPI).

The results of routine core analysis (RCA) including porosity and permeability measurements were employed to divide the study 
reservoir into hydraulic flow units (HFUs) using the global hydraulic elements (GHEs) approach. Based on five classified HFUs, 16 samples 
were selected for special core analysis, i.e., mercury injection capillary pressure (MICP) and grain size analyses for establishing non-linear 
porosity-permeability model of each HFU based on Kozeny-Carman equation, which provides an improved prediction of permeability (R2 
= 0.846) comparing to that by the empirical poro-perm relationship (R2 = 0.633).

In addition, another permeability model, namely the Winland R35 method, was applied and gave very satisfactory results (R2 = 
0.919). Finally, by integrating the results from MICP and grain size analyses, a good trendline of pore size distribution index (λ) and 
grain sorting was successfully obtained to help characterise the study reservoir. High λ came with poor sorting, and vice versa, the low λ 
corresponded to good sorting of grain size.

Key words: Core analysis, hydraulic flow units (HFU), non-linear poro-perm, Oligocene sand, Nam Con Son basin.
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The porosity was measured by UltraPore-300TM and 
CMS-300 equipment using the Boyle’s Law gas expansion 
method. 

Gas (nitrogen) permeability was determined using 
gas permeameter (GasPerm) equipment. Firstly, the 
sample was pushed in the core holder and confined, 
then nitrogen was passed through the sample at a 
known flow rate. Upstream pressure and flow rate were 
monitored until stable indicating steady-state conditions. 
Permeability using Darcy’s equation was calculated from 
these data.

Mercury injection capillary pressure (MICP) was 
performed on Autopore IV equipment, the sample 
was initially filled with mercury under a vacuum and 
was  incrementally pressurised to a maximum of 60,000 

Figure 2. Flowchart of the study.

Figure 1. Study location in the Nam Con Son basin, Vietnam [1].

psia. The volume of mercury injected was determined 
by the change in capacitance in the capillary stem. 
This equipment can detect pore diameter range from 
approximately 0.002 μm to 360 μm.

The grain size analysis was also conducted during 
thin section analysis. Based on standard deviation (σ1) of 
grain size, the grain sorting of each sample was classified 
to three main types as poorly, moderately, or well-sorted.

2. Methodology

2.1. Core preparation

A total of 50 core plugs were taken and their porosity 
and permeability were measured, based on which the 
target reservoir was divided into five hydraulic flow units 
by Global Hydraulic Elements method. Subsequently, 16 
samples were selected from the identified HFUs for MICP 
and grain size analyses (Figure 2).

2.2. Presentation and analysis of core data

2.2.1. Empirical porosity-permeability (poro-perm) cross plot

This is the most used porosity-permeability 
relationship, constructed by plotting the core-measured 
permeability (log k) versus porosity (Φ) values in a 
semilogarithmic scale. It is an empirical poro-perm 
model that can effectively predict the permeability 
based on core porosity measurements [2]. However, in 
reality most reservoirs are geologically heterogeneous 
and anisotropic, thus a simple empirical poro-perm 
model may not work well, and more complex porosity-
permeability models have been developed to help 
predict permeability, in particular for the uncored 
reservoir intervals. One of these non-linear models 

Sample preparation

Core measurements  
of ф and K

HFU classification by GHE 
method [3]

MICP and grain size analyses

Winland’s model [5] λ-grain sorting Pore throat size distributionNon-linear Kozeny-Carman’s 
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Empirical poro-perm model
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based on Kozeny-Carman Equation 2 is described in the 
following.

2.2.2. Classification of HFU by GHE method [3]

Hydraulic flow unit is a concept commonly used in 
petrophysics nowadays [2]. It is considered as a part of the 
reservoir where geological and petrophysical properties 
that affect the flow of fluid are consistent and predictably 
different from those of other parts of the same reservoir.

Corbett and Potter have developed a new technique 
of reservoir rock typing using the flow zone indicator (FZI) 
values [3]. They defined rock type and HFUs based on a 
series of ten FZI boundary values (Table 1).

The hydraulic quality of the rock is controlled by its 
pore geometry, which is a function of mineralogy and 
texture such as grain size, grain shape, sorting and packing 
as presented in Kozeny-Carman equation below [2]:

Where: 

K is permeability, μm2; 

Fs is the shape factor; 

τ is tortuosity; 

Sgr is the specific surface area per unit grain volume, 
μm-1; 

Φe is effective porosity, frac.

Taking square root of both sides of Equation 1 one gets:

Denoting:  =              =   

  =  . 

 is reservoir quality index; 

 =              =   

  =  . 

 is flow zone indicator that represents 

textural characteristics of the reservoir; 

 =              =   

  =  .  is 

normalised porosity, which is the ratio between pore 
volume and grain volume.

Substituting RQI, FZI and Φz into Equation 2 one has:

Finally, Equation 1 can be rewritten as below to allow 
the permeability calculation of each HFU:

where FZIavg is the average FZI value of each HFU; 
Equation 4 is the permeability model based on Kozeny-
Carman equation; 1014 is a constant to  convert the 
permeability unit from μm2 to millidarcy (mD).

2.2.3. Pore throat size calculation

Pore throat size distribution of reservoir rock offered 
a promised understanding of fundamental flow processes 
in the porous matrix. It is, therefore an important 
parameter that reflects the reservoir quality. For instance, 
one rock containing the majority of the macro pore throat 
size suggests it may be a highly permeable rock and 
vice versa. Based on MICP data, pore throat size can be 
calculated directly from Washburn equation as below [4]:

where Pc is the capillary pressure, psi; C is the 
Washburn constant (0.145038); σ is the interfacial tension 
(Air-Hg), dynes/cm (485); θ is the contact angle (Air-Hg), 
degrees (140);  and rc is the pore throat radius, μm.

2.2.4. Pore size distribution index (λ)

The pore size distribution index (λ) is a key parameter 
for characterisation of a heterogeneous porous medium, 
which has a strong influence on the capillary pressure 
shape curves as shown by Brooks-Corey’s equation [5] 
below:

Taking the logarithm of both sides of Equation 6 one 
gets:

where Pc is capillary pressure, psi; Pd is the entry 
(displacement) capillary pressure, psi; λ is the pore size 

FZI 48.026 24.013 12.006 6.003 3.002 1.501 0.750 0.375 0.188 0.094 

GHE 10 9 8 7 6 5 4 3 2 1 

Table 1. Hydraulic unit lower boundaries (shown as FZI values) for GHEs [3]
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distribution index; Sw is the water saturation (frac); Swir 
is the irreducible water saturation (frac); 

=  

( ) = ( ) +

 is 

 

 
is the normalised water saturation.

By plotting the values of Pc versus the normalised 
water saturation on a log-log scale following  
Equation 7 one will get a straight line having the 
slope equal to (-1/λ), and the intercept of ln (Pd). 
This represents the basis of a graphical procedure to 
determine the pore distribution index.

2.2.5. Pore throat radius (R35) and Winland’ R35 
approach

R35 is the pore throat radius value corresponding 
to 35% mercury saturation from mercury injection 
capillary pressure test. Winland [5] suggested that 
the effective pore system that dominates flow 
through rock corresponds to a mercury saturation 
of 35% as shown in Equations 8a and 8b, and the 
producing capacity of each pore throat group is 
shown in Table 2:

3. Results and discussion

3.1. Empirical porosity-permeability relationship

Measurements of permeability and porosity of 
all 50 samples are plotted in Figure 3, giving a poro-
perm relationship as shown in Equation 9 with R2 = 
0.633:

3.2. Hydraulic flow unit identification and 
permeability prediction

Figure 4 shows a plot of RQI versus Φz, based on 
which five discrete rock types were identified and 
supposed to correspond to five HFUs, having the 
average FZI equal to 0.115, 0.287, 0.481, 1.048 and 
2.324, respectively (Table 3). It is clearly seen that 
the higher FZI the better reservoir quality in terms 
of fluid flow in the reservoir rock. For each HFU, the 
permeability can be calculated using the non-linear 
poro-perm model in Equation 4, which is plotted 
versus the measured permeability as shown in Figure 
5, showing a good R2 = 0.846.

3.3. Results of mercury injection capillary pressure (MICP) 
and grain size analyses

Among five classified HFUs, HFU1 has the lowest average 
FZI. It was considered a non-reservoir and eliminated in further 
reservoir characterisation. A total of 16 samples from HFU2, HFU3, 

 Figure 4. Identification of 5 HFUs based on reservoir quality index (RQI) versus the normalised 
porosity (Φz) relationship.

Figure 3. Empirical porosity - permeability model.
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Port size R35 value (μm) Production capacity (bbl/day) 
Mega >10 Tens of thousands 
Macro 2 to 10 Thousands 
Meso 0.1 to 2 Hundreds 
Micro <0.1 Non-pay zone 

Table 2. Production capacity based on R35 [5]
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HFU1
HFU2
HFU3
HFU4
HFU5
Selected for SCAL

Hydraulic flow unit Average flow zone 
indicator, FZIavg.  

Number of samples  
of each HFU  

HFU1 0.115 12 
HFU2 0.287 20 
HFU3 0.481 7 
HFU4 1.048 9 
HFU5 2.324 2 

Table 3. Average FZI value of five identified HFUs
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HFU4 and HFU5 were selected for MICP and grain size 
analyses. The capillary pressure of the air-mercury 
system was converted to the gas-water system, and 
the approximately residual water saturation values 
were taken at 230 psi of the gas-water system.

The summary of results is presented in Table 4, 
indicating that the grains of samples in HFU2 were 
poorly to moderately sorted, showing the highest 
average pore size distribution index (λ = 1.267), while 
most of the well-sorted samples in the HFU4 and 
HFU5 have lower λ of 0.900 and 0.762, respectively. 
On the other hand, most of the moderately to well-
sorted samples in HFU3 λ range from 1.116 to 1.264. 
By plotting capillary pressure versus water saturation 
as shown in Figure 6 with the changes in λ and grain 
sorting [6], it can be observed that the samples with 
low λ tend to be well-sorted, whereas those with 
larger λ showed poorer sorting.

3.4. Pore throat size distribution and R35 value

As seen in Figure 7, the pore throat sizes of all 
samples are broadly presented from macro to micro 
and smaller. Generally, the pore throat sizes of HFU2 
and HFU3 vary from meso to micro and smaller, while 
those of HFU4 and HFU5 are found in a narrower 
range from macro to meso.Figure 6. Capillary pressure curves for HFUs 2 to 5.

Figure 5. Measured permeability versus calculated permeability by Kozeny-Carman equation for 
five HFUs.
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Lamda (λ)  

Correlation 
coe�cient 

(R2) 
 R35, μm HFU 

Grain size analysis 
Standard 

deviation (σ1)
Grain 

Sorting Air-Hq, psi Air-W, psi 

9 0.132 0.41 0.363 97.23 18.84 1.250 0.914 0.317 0.575 2 0.71 M 
11 0.129 0.25 0.295 110.13 21.34 1.322 0.918 0.303 0.533 2 0.66 M-W 
12 0.120 0.22 0.311 92.48 17.92 1.237 0.920 0.303 0.681 2 0.72 M 
13 0.123 0.30 0.345 80.65 15.63 1.210 0.917 0.279 0.806 2 0.70 M 
14 0.119 0.18 0.289 108.06 20.94 1.310 0.924 0.348 0.518 2 1.33 P 
16 0.125 0.25 0.308 93.66 18.15 1.272 0.930 0.261 0.706 2 0.64 M-W 

Average HFU2 0.319 97.03 18.80 1.267  0.302 0.637    
3 0.141 1.20 0.557 67.77 13.13 1.161 0.912 0.239 1.026 3 0.41 W 
6 0.123 0.38 0.391 91.66 17.76 1.136 0.879 0.365 0.465 3 0.99 M C 
7 0.126 0.52 0.439 83.75 16.23 1.190 0.912 0.287 0.742 3 0.64 M-W 
8 0.150 1.36 0.538 71.44 13.84 1.116 0.902 0.273 0.833 3 0.69 M-W 

10 0.123 0.41 0.410 96.60 18.72 1.264 0.919 0.245 0.673 3 0.62 M-W 
Average HFU3 0.467 82.24 15.94 1.174  0.282 0.748    

1 0.178 8.98 1.029 38.50 7.46 0.852 0.873 0.298 1.044 4 0.49 W 
4 0.161 5.60 0.967 80.51 15.60 1.165 0.902 0.336 0.593 4 0.55 M-W 
5 0.193 19.67 1.325 26.91 5.21 0.864 0.878 0.264 1.879 4 0.45 W 

15 0.129 3.67 1.125 23.12 4.48 0.721 0.809 0.248 1.166 4 0.49 W 
Average HFU4 1.112 42.26 8.19 0.900  0.286 1.170    

2 0.194 103.27 3.014 12.38 2.40 0.762 0.894 0.260 6.163 5 0.45 W 
Average HFU5  3.014 12.38 2.40 0.762  0.260 6.163   A 

Table 4. Summary of MICP and grain size analyses results
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Referring to Table 4, most of the R35 values 
of the HFUs 2 to 4 belong to the meso pore size 
groups with production capacity of hundreds 
bbl/day, except the HFU5 that has the highest R35 
value of 6.163 μm and is identified as macro pore 
with production capacity of thousands bbl/day.

Permeability predicted by the Winland’s 
model (Equation 8b) matches well with the 
measured permeability values as seen in Figure 
8, showing good coefficient (R2 = 0.919).

From the results calculated by three 
permeability models as plotted in Figure 9, 
one can see that Kozeny-Carman’s model and 
Winland’s model gave a better correlation 
coefficient (R2) compared to that by the empirical 
poro-perm model.

4. Conclusions and recommendations

Core tests were conducted over a set of 
50 core plugs taken from the Oligocene sand 
in the Nam Con Son basin. Subject to the core 
analysis and interpretation results, the following 
conclusions were drawn:

- Based on the conventional RCA 
measurements of porosity and permeability, 
an empirical poro-perm model was successfully 
found for the study Oligocene sand (Figure 3 
and Equation 9) with a correlation coefficient R2 
= 0.633 as reproduced below:

By applying the GHE method [3] the study 
clastic reservoir was divided into five hydraulic 
flow units (HFUs) denoted from HFU1 to 5. 
For each of them, the following non-linear 
permeability prediction models were found 
using the modified Kozeny-Carman equation 
(Equation 4) as reproduced below:

Figure 7. Pore throat size distribution for each HFU.

Figure 8. Measured permeability versus permeability calculated by Winland’s equation (Equation 8b). 

Figure 9. Comparison of three permeability prediction models developed in this study. 
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By plotting the permeability calculated by Equations 
11a-e and comparing with the measured permeability 
as shown in Figure 5, one can see an increase of R2 to 
0.846, which is higher than that by the empirical model 
mentioned above with R2 = 0.633.

Among the five identified hydraulic flow units, HFU1 
has the lowest average FZI and was considered as non-
reservoir. A total of 16 samples were selected only from 
HFU2, HFU3, HFU4 and HFU5 for further SCALs of mercury 
injection of capillary pressure (MICP) and grain size 
analyses. It was found that most of the samples in HFU4 
and HFU5 have pore throat size distributing in macro and 
meso size range, while HFU2 and HFU3 were meso and 
smaller. Consequently, another permeability prediction 
model based on Winland R35’s equation (Equation 8a) 
was developed in this study using MICP results as follows:

By plotting the permeability calculated by Equation 
8b or 12 and comparing with the measured permeability 
as shown in Figure 8, one can see a significant 
improvement of R2 to 0.919, which is higher than that 
by the empirical poro-perm with R2 = 0.633. Comparison 
of the 3 permeability models is shown in Figure 9, 
illustrating clearly the advantages of HFU-based non-
linear permeability to the empirical poro-perm for an 
Oligocene sand in the Nam Con Son basin.

- It was found that grain sorting of the study 
Oligocene sand is closely related to the pore size 
distribution index (λ), i.e., the low λ corresponds to well-
sorted grains, while the high λ corresponds to more 
heterogeneity and poorly sorted grains. Based on the R35 
values, the HFU2, HFU3 and HFU4 are of meso pores, while 
HFU5 is of macro pore. The latter, therefore, can produce 
hundreds to thousands barrels/day.

- As the HFU-based permeability prediction method 
based on Kozeny-Carman equation proved to be effective 
in the characterisation of a heterogeneous Oligocene 
sand in this study, we recommend it be applied to other 

clastic reservoirs and fields in the Nam Con Son basin. It is 
also recommended to revisit the values of FZI used in HFU 
classification by the GHE method [3] (Table 3), taking into 
account the local geological conditions.
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1. Introduction

Mitigation of sand production is an important and 
challenging issue in the petroleum industry which 
requires sand control decision-making. Although 
approximately 60% of the world’s oil and gas production 
comes from carbonates, about 70% of the petroleum 
reservoirs worldwide are located in sandstone formations 
where sand production can be a potential problem [1]. 
Some carbonate reservoirs may also produce solids [2]. 
In complex reservoir conditions such as deepwater, high 
temperature, high pressure, there are always problems 
(produced sand, hydrates, scale, wax/asphaltene, etc.). 
Sand production can lead to erosion, loss of integrity and 
potential fatalities. Applying different methods of sand 
control usually causes a reduction in well productivity and 
increasing cost of well. 

Sanding is caused by the disaggregation of 
formation rock because of the in-situ stress and the fluid 
hydrocarbon flow from a weakly consolidated and non-
consolidated sandstone reservoir. The sand production 
process can be divided into three stages: (i) rock matrix 
failure and opening hole or perforation from which free 

GEOMECHANICAL MODEL AND SANDING ONSET ASSESSMENT: 
A FIELD CASE STUDY IN VIETNAM
Nguyen Van Hung, Bui Thi Thuy Linh
Petrovietnam University
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sand grains are generated, (ii) detachment of sand grains 
from failed rock, and (iii) transportation of free grains by 
reservoir effluents into the wellbore and up to the surface 
[3]. There are several elements which must be considered 
to understand the mechanism of sand production that 
occurs, including near wellbore stress, rock and fluid 
properties, rock composition, drilling and production 
operations and geological conditions. Under the initial 
condition,  a virgin formation will be unchanged in its 
stress state. Perforation or completion of the formation 
would change the stress state around the perforation 
hole.

Sand production prediction is important, and 
traditional remedies used in petroleum engineering today 
are based on field observation and experience, laboratory 
experiments and numerical modelling. In recent years, 
neural network-based techniques evolved through the 
work of Kanj and Abousleima [4]. The observation and 
empirical methods attempt to establish a correlation 
using multi-variable linear regression between the data 
collected from a sand producing well and the operational 
and field parameters (production rate, drawdown) 
relating to reservoir formation, well completion and 
production. Several projects have been conducted to 
predict sand production based on the critical stress state 
at which failure occurs. Tensile failure appears when 

Summary

Sand production is a key issue when selecting and applying completion solutions like open holes, screens or perforated liners. This 
problem can be seen in several types of reservoirs such as weakly consolidated and non-consolidated carbonates. The paper presents 
a method to model wellbore failures for sanding prediction. Our study shows that the potential sand risk in this field is defined by the 
rock strength rather than the in-situ stress. If the rock is sufficiently competent, the potential of sand production is negligible and the 
development wells can be completed conventionally without any downhole sand control for the reservoir pressure above 1,280 psi and 
the maximum drawdown pressure of 2,380 psi.    

Key words: Sand production, in-situ stress, sand control. 
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effective stress in the rock exceeds its tensile strength, 
which is mostly applicable in high-rate oil and gas wells. 
For this group, it is generally assumed that a critical 
flowrate or drawdown exists which is sufficient to break 
up the material in tension. This mode of failure can best be 
visualised in relatively uncemented (commonly referred 
to as an unconsolidated or weakly consolidated) materials 
where under right seepage forces the cementation can be 
broken, leading to transport of sand grains. Such models 
generally render a maximum drawdown that should not 
be exceeded. Their practical application has mostly been 
used for predicting the early life drawdown as the effect 
of depletion is not rigorously factored into the equations 
thus making their applications in late life situations 
unconservative. Shear failure occurs when the tangential 
stress along the shear plan exceeds a critical value, which 
depends on the normal stress. 

Various failure criteria in terms of functions of the 
effective stress have been developed. For example, the 
Mohr-Coulomb, Hoek Brown, Druker-Prager, Lade, and 
Mogi-Coulomb, Weibols and Cook, Griffith, Tresca criteria 
are used as the shear failure models for sanding onset 
[5]. Rock mechanical properties are essential for accurate 
in-situ stress analysis and geomechanical evaluation 
including wellbore stability analysis, sand production 
prediction and management, hydraulic fracturing 
design, fault stability and reactivation analysis, and 
other geomechanical applications. The rock mechanical 
parameters typically recommended to populate a 
geomechanical model are: unconfined compressive 
strength (UCS), friction angle (θ) or coefficient of internal 
friction (μ) (where μ = tanθ), thick wall cylinder strength 
(TWC), elastic moduli (Poisson’s ratio (ν), and Young’s 
modulus (E)). While the mechanical parameters can be 
derived from well logs (bulk density, compressional and 
shear sonic logs) and laboratory tests on core samples, 
laboratory measurements of the elastic moduli (triaxial 
tests) on core samples subjected to the in-situ stress 
condition are also correlated with well logs to derive a 
continuous strength profile as a function of depth. 

2. Sanding onset workflow

The key feature in sand production prediction is a 
geomechanical model that consists of field stresses (σv, 
σH, σh), pore pressure (Pp), direction of σH, σh, rock strength 
and elastic moduli [6]. The vertical stress is calculated by 
integrating the density log (ρb) or sonic log. In the absence 
of both log data, lithological and regional information 

can be used to approximate σv. The least principal stress 
is usually evaluated from leak-off tests (LOTs), extended 
LOTs (ELOTs), or minifrac tests. While a minifrac test is 
conducted with a particular objective of measuring the 
minimum horizontal stress in a field, LOTs and ELOTs are 
usually carried out as part of a drilling programme. In 
addition, σh can be estimated from σv and Poisson’s ratio 
by using its relationship or this approach assumes that 
the ratio between the vertical effective stress and the 
minimum horizontal effective stress remains constant 
with depth. The use of regional information and empirical 
models for σh is also useful where reliable field data are 
not available. 

 The direction of horizontal stresses is determined 
from borehole breakout observation, multi-arm calliper 
logs, drilling-induced tensile fractures (DITF) in high 
resolution image logs, and transmission of shear wave 
velocity. If these measures are not available, recent 
tectonic activities in the area of interest and regional 
stress data such as the world stress map should be 
valuable sources of information. It is evident that there 
is no way to measure or determine directly the value 
of maximum horizontal stress σH. In this situation, the 
stress polygon method, the linear elastic theory and rock 
failure criteria for a particular borehole condition should 
be the good remedies to determine σH. Pore pressure 
is estimated directly from measurements in permeable 
and reservoir zones such as repeat formation tester 
(RFT), drillstem test (DST). For sands, the pressures are 
modelled using buoyancy estimations and depletion, 
when applicable. It is also important to determine the 
top of overpressure if any.

The uniaxial compressive rock strength (UCS) profile 
is determined based on the rock mechanical testing data. 
There are some references models which can be used: 
UCS = 1.35Vp

2.6 (for shale), UCS = 185165e-0.037*DTCO (for 
sandstone). The internal friction for lithologies in some 
cases can be assumed constant 0.4 (for shale), and 0.5 (for 
sandstone). The Poisson's ratio is 0.2 and 0.3 for sand and 
shale, respectively.

The geomechanical workflow, as shown in Figure 1, 
is represented as a series of 10 interdependent steps. The 
sequence reflects a logical progression of data processing, 
each step builds upon one or more preceding steps [6].

Sanding onset analysis uses the results of final 
geomechanical models. These models encompass rock 
strength profile, initial reservoir pressure, and pressure 
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decline data from the production plan. Then sand-
free operating envelopes and sanding evaluation log 
plots represent specific rock strengths at given depths. 
The studied reservoir pressure is determined from 
current drawdown and the planned final abandonment 
pressures. The sand failure is predicted, and the onset of 
sand production is assumed from rocks with the specified 
strength. 

3. Shear failure criteria

The first method was used in horizontal wells by 
BP in 1985 [7]. This method predicts sanding as shear 
failure, and the production of sand grains is accompanied 
with fluid flow that transfers disaggregated sands. The 
mathematical representation is given in Equation 1 and 
the criterion for sanding is:

BHFP≤ (3σ1 - σ3 - σy)/(2-A) – PrA(2-A)

Where CBHFP = critical bottom hole flowing pressure; 
Pr = current average reservoir pressure; σ1, σ3 are the total 
principal major and minor stresses; σy is the effective 
formation strength (σy = 3.1 × TWC); Factor 3.1 includes 
the scale transformation from TWC laboratory sample 
(OD:ID = 3) to field (OD:ID = infinity); A is the pore elastic 
constant (A = (1 - 2ν) × α(1 - ν)); α is the Biot factor; TWC 
represents a fundamental measure of strength for an 
unsupported borehole and perforation.

4. Tensile failure model

This mode of failure can be best matched in weakly 
consolidated sandstone. This model provides a maximum 
allowable drawdown. Equation 2 shows the relationship 
between the rock strength and fluid flow in a perforation:

∆q = qμ/4πkr = C(1+3sinφ)/tanφ(1-sinφ)

Where q is flow rate, μ is viscosity, r is perforation 
radius, k is permeability, φ is angle of internal friction, C is 
intact rock cohesive strength. 

The critical drawdown (CDP) for liquids is: 

CDP = 4C cosφ/(1 - sinφ)

5. Case study

5.1. Input data

In order to build the sand production risk model for 
our proposed production wells, we have collected the 
following data:

- Geological, petrophysical, logging, drilling, well test, 
and reservoir data including gamma ray, calliper, neutron 
porosity, density, resistivity, sonic curves, and dipole logs.

- Geomechanics testing: select rock samples and 
identify suitable intervals for rock mechanical strength 
tests.

- In-situ stress model: log data derived strength 
correlations with strength model from laboratory tests. 

- Rock strength model: analysis of density logs, FIT/
LOT/ELOT, minifrac, and borehole failure, such as: UCS/C0, 
TWC, So, θ, E, ν, α.

- Drilling incidents and data from offset wells.

5.2. Geomechanical model

TWC model

Our data collection shows the rock mechanical tests 
including around 20 UCS and 10 TWC tests. The results 
are performed in both vertical and horizontal directions. 
After visual inspection by SEM, X-Ray, and thin-section, we 
observed that there is no distinct bedding in these cores, 
so the results from the vertical samples are assumed to be 
similar to those from the horizontal ones. 

The ratio of TWC/UCS from our cores is plotted 
in Figure 2 and compared with the theoretical model 
(worldwide data). It can be seen that with hard rocks (UCS 
> 4,000 psi), the TWC/UCS ratio is constant at just below 2. 

Rock properties

Earth stresses

Data audit

Overburden stress Pore pressure Minimum horizontal 
stress

Maximum horizontal
stress

Horizontal stress 
direction

Framework model Mechanical stratigraphy Elastic properties Rock strength

Steps:
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Figure 1. The geomechanical workflow [6].
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However, this ratio increases significantly and can exceed 4 
with UCS less than 1,000 psi. This is due to the compaction 
effect which strengthens the core in TWC behaviour, but 
it is absent in UCS results. Our result data follow a similar 
trend to the worldwide data with the range of UCS from 
2,096 - 5,670 psi but offset slightly towards the lower TWC/
UCS ratios. The model of TWC/UCS ratio from our core tests 
can be expressed as a function of UCS by Equation 4:

Because TWC values are taken directly in the sand 
production model, the relationship between TWC and 
elasticity modulus (Ec) is used to derive a functional 
continuous rock strength. The reasons for selecting 
Young’s modulus are: Ec can be used to predict strength 
profiles in the development wells (taking DT data) and, 
more importantly, the correlation coefficient in the cross-
plot is better. Figure 3 shows the relationship between 
TWC and Ec resulting in the model:

TWC = 2460.2Ec - 3209.5

In-situ stress model

Vertical stress and pore pressure model

The analytical models provide stress components in 
cylindrical coordinates such as tangential, radial around 
the vertical/horizontal/perforation cavity [8]. These are 
the stresses that cause the rock surrounding the open 
cavity to fail. The in-situ principal stresses (vertical, major 
horizontal stress, minor horizontal stress) are the keys. The 

far-field orientation is pivotal for deviated or horizontal 
wells. The pore pressure also plays a role in modifying the 
total stress at any point in the rock into an effective stress. 
In the research area, the normal pressure regime is 0.433 
psi/ft over the main intervals of the reservoir in our wells. 
The vertical stress model is built from density logs ρb = 
ad2 - bd + c, where d is true vertical depth. 

Our density data are available for all wells but the 
best one is illustrated in Figure 4. We have no data 
measurement in the shallow depth (less than 1,990 
m). The model in this figure indicates a consistent and 
overlying compaction trend for a standard well (from 
1,990 m to 2,532 m). For most sedimentary rocks and in 
our case, the compaction trend can be described as the 
relationship between bulk density and depth by Equation 
6. This model overestimated formation densities near the 
mud line, and at depths greater than 3,532 m at TVD. The 
gradient of overburden is 0.950 psi/ft.

ρb = 14,768d2 - 57,808d + 56,858

Minimum horizontal stress

We applied both direct and theoretical methods. 
Obviously, the direct field measurement is normally 
preferred by minifrac test and LOT, FIT. In the FIT test, 
we verify the quality of the cementing of casing, and the 
pressure is increased until leak-off occurs to the formation 
due to fracture initiation. In the LOT test, the pressure goes 
up until fracture initiation has been seen (FIP or leak-off 
pressure). There is no signal of mud losses during drilling 

Figure 2. TWC and UCS relationship compared with theoretical model.
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operations from mud line to 1,990 m at TVD depth. 
The uniaxial elastic model provides the calculation of 
minimum horizontal stress:

Where ν is the Poisson’s ratio (0.2 for sand), α is the 
Biot’s factor (1.0 for sand). In our case, the estimated 
minimum horizontal stress is 0.59 psi/ft. 

Maximum horizontal stress and pore pressure

The maximum horizontal stress is determined 
from observations of image logs and available rock 
mechanical data. Through breakout observation in 
some wells, the minimum horizontal stress is in the 
direction of 35 - 50o, and correspondingly a maximum 
stress direction of 122 - 140o. In addition, the breakout 
analysis uses the stress polygon approach to estimate 
the magnitude of the maximum horizontal stress. Our 
approach is based on Mohr-Coulomb theory [8]. For 
the breakout area to occur, it is assumed that the Mohr 
circle, representing bay hoop stress and radial stress, 
equals the failure envelope (defined by the cohesive 
strength and friction angle of the rock material). 
Equation 8 shows the maximum horizontal stress 
corresponding to the failure condition: 
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Our data showed the reservoir interval with normal 
pressure regime of 0.441 psi/ft.

6. Sanding onset assessment

For a vertical well with open hole completion and 
the input data as illustrated in the previous parts, a sand 
production model is developed to predict the downhole 
condition (critical drawdown) required for rock failure, and 
hence potential sand production [9]. Our model uses the 
laboratory results of TWC. The tangential stress around 
an opening (perforation or open hole) is calculated and 
compared to the effective formation strength. In Figure 
5, the BHFP is calculated by Equation 1 and the reservoir 
pressure at any given time. The result shows the potential 
reservoir pressure and bottom hole flowing pressure that 
results in rock failure. When the BHFP > Pr, there is no sand 
production (above blue line). The red line represents the 
rock failure threshold, which is for a TWC strength and 
single perforation or well orientation in this case. Any 
failing point below the sand failure zone indicates that a 
failure condition has occurred for the relevant cavity, and 
that sand production is assumed. Any failing point above 
the red line represents a no failure condition and sand-
free hydrocarbon production. In our case, the maximum 
drawdown is 2,380 psi and the reservoir pressure should 
be managed above 1,280 psi.  

7. Conclusions

This paper presents a method for sand production 
prediction from laboratory and field data. The method has 
been applied to a case to assess sanding risk in a proposed 
well, helping minimise sanding risk in the future. Sanding 
evaluation results using the predictive model presented 
in this paper should be verified by field observations. 
Sanding evaluations are performed over the lifetime of 
a field from current to final (abandonment) reservoir 
pressures and at pressure conditions corresponding to a 
decrease of up  to 500 psi for all existing production wells 
during their life circle. Some main points can be concluded 
through this study:

- Rock strength testing is required prior to the 
execution of a geomechanical study itself;

- The best model for calculating log-derived 
strength UCS/TWC can be selected using combination 
of conventional laboratory triaxial testing and non-
destructive methods;

- The maximum drawdown is 2,380 psi and the 
reservoir pressure should be managed above 1,280 psi. 
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1. Introduction

As defined by the European Standard PN-EN 13306 
[1], maintenance is “a combination of all technical, 
administrative, and managerial actions during the life 
cycle of an item intended to retain it, or restore it to a 
state, in which it can perform the required function”. 
Maintenance on the field generally includes repair and 
replacement of equipment parts to maintain equipment 
within its operating conditions.

In manufacturing environment, maintenance is one of 
the critical success factors. Poorly maintained equipment 

AN OVERVIEW OF THE APPLICATION OF MACHINE LEARNING IN 
PREDICTIVE MAINTENANCE
Tran Ngoc Trung1, Trieu Hung Truong2, Tran Vu Tung1, Ngo Huu Hai1, Dao Quang Khoa1
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often leads to unplanned downtime and low performance. 
Some adverse impacts on business performance are 
behind schedule operation, waste increase, and poor 
quality products, etc. According to the International 
Society of Automation, the cost of machine downtime 
is USD 647 billion each year globally [2]. Different 
corporations may have different maintenance strategies 
depending on several factors, such as maintenance goals, 
equipment’s nature, operational process design, and work 
environment. Commonly used maintenance approaches 
are categorised into a) corrective maintenance (CM), b) 
preventive maintenance (PM), c) predictive maintenance 
(PdM), and d) proactive maintenance [3]. Amongst these 
approaches, the PdM aims to make timely maintenance 
decisions timely by focusing on fault detection, 
component diagnosis, degradation monitoring, and 

Summary

With the rise of industrial artificial intelligence (AI), smart sensing, and the Internet of Things (IoT), companies are learning how to 
use their data not only for analysing the past but also for predicting the future. Maintenance is a crucial area that can drive significant cost 
savings and production value around the world. 

Predictive maintenance (PdM) is a technique that collects, cleans, analyses, and utilises data from various manufacturing and sensing 
sources like machines usage, operating conditions, and equipment feedback. It applies advanced algorithms to the data, automatically 
compares the fed data and the information from previous cases to anticipate or predict equipment failure before it happens, thus helping 
optimise equipment utilisation and maintenance strategies, improve performance and productivity, and extend equipment life. Robust 
PdM tools enable organisations to leverage and maximise the value of their existing data to stay ahead of potential breakdowns or 
disruptions in services, and address them proactively instead of reacting to issues as they arise. Therefore, it has attracted more and more 
attention of specialists in recent years. 

This paper provides a comprehensive review of the recent advancements of machine learning (ML) techniques widely applied to PdM 
by classifying the research according to the ML algorithms, machinery and equipment used in data acquisition. Important contributions 
of the researchers are highlighted, leading to some guidelines and foundation for further studies. Currently, BIENDONG POC is running 
some pilot PdM projects for critical equipment in Hai Thach - Moc Tinh gas processing plant.
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failure prediction in real-time, therefore reducing the 
uncertainty of maintenance activities.

With the Fourth Industrial Revolution (Industry 4.0), IT 
infrastructure has been continuously improved to support 
smart sensing, Internet of Things (IoT), big data collection, 
and analytics tools; companies now can get the most 
out of their data. Data-driven decisions can be made by 
analysing historical events and trends in the past [4, 5]. In 
the case of complex equipment with a large amount of 
data, processing and analysing become more and more 
challenging for humans to handle. There are disadvantages 
of human dependent scenarios, where humans monitor 
equipment and make decisions manually for the work 
needed on the equipment. First, specialists’ performance 
is highly dependent on their expertise levels. In a study 
by Smith-Bindman R. et al. [6], less experienced physicians 
tend to make false diagnostic decisions at a rate of 50% 
higher than more experienced ones. This issue becomes 
worse with industries that lack specialists who are well 
trained and experienced. In addition, the consistency 
of diagnostic decisions among specialists cannot be 
guaranteed. A study by Gulshan et al. [7] compared 
decisions from seven US-certified ophthalmologists 
regarding diagnosing the severity levels of diabetic 
retinopathy based on photographs of the retinal fundus. 
It showed poor consistency among ophthalmologists, in 
which only 20% of the cases demonstrating a complete 
agreement among them. Last but not least, specialists 
who analyse a large number of data for a long time can 
make more mistakes and work less efficiently because of 
mental fatigue and cognitive overload [8].

Figure 1. Machine learning is a subset of artificial intelligence.

Artificial intelligence (AI) is an element of Industry 4.0, 
showing its application in the manufacturing industry as 
a powerful tool for machine health diagnosis. A recent 
survey indicated that PdM is expected to be one of the first 
fields where AI-based technologies will be successfully 
implemented [9]. Indeed, it is almost impossible for a 
human operator to interpret data in real-time, and the 
conventional systems can neither spot anomalies in data 
nor predict a sensor reading in a specified time window, 
AI and machine learning (ML) techniques have therefore 
emerged as a promising tool in PdM applications for 
intelligent manufacturing in Industry 4.0, which involves 
rethinking and optimising the entire maintenance 
strategy as a whole. 

As illustrated in Figure 1 machine learning is a 
subfield of AI and defined as an algorithm or programme 
capable of learning independently with minimal or 
without assistance from humans. ML supports solving 
many complex human problems, such as image 
processing, big data, robotics, and speech recognition. By 
utilising ML in processing, continuously monitoring, and 
analysing equipment’s health, corporates can achieve 
greater operational and maintenance efficiency and 
effective growth management by improving equipment 
performance. A case study by Roosefert et al. show an 
impressive 84% reduction of breakdown time and 88% 
reduction of breakdown occurrences when applying 
intelligent ML-based PdM approach compared to the 
conventional Industry 3.0 setup [10]. This will also 
increase the availability and reliability of equipment and 
reduce operational risks, therefore improving corporates’ 
competitive advantages. With recent advances in ML 
techniques, numerous studies have explored the potential 
of the ML approach and demonstrated promising results. 
For example, Akram et al. [11] developed the convolution 
neural networks (CNNs) for fault detection of photovoltaic 
cell defects and achieved 93.02% accuracy. In another 
study, Ren et al. [12] employed region-based CNN 
(R-CNN) to automate object detection training in real-
time. Cha et al. [13] applied R-CNN to detect five types 
of structural surface damages on bridges and achieved 
a mean average precision (mAP) of 87.8%. The problem 
of concern today regarding ML in PdM applications is to 
choose the most suitable, simple, and effective algorithm 
for each specific problem. ML algorithms often require 
large data acquisition about failure situations and 
different operating states of the system or device to train 
the model.

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING
Algorithms or programmes capable of learning 
independently with minimal or no additional 

assistance from humans
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2. Evolution of maintenance approaches 

The evolution of maintenance approaches is 
presented in Figure 2.

Corrective maintenance (CM), also known as 
“breakdown maintenance” or “run to failure”, is the first 
approach to maintenance. No routine maintenance 
activity is scheduled in this approach, and maintenance 
actions only occur after equipment breakdown. It is, 
therefore, impossible to optimise equipment performance 
with respect to economic or reliability criteria [3], and 
subsequently, equipment availability and reliability 
performance are substandard. Despite being inferior to 
other approaches, the CM approach is still in use due to the 
low cost of implementation, and suitable for equipment 
that has a low budget to repair or replace. Companies 
often apply CM to equipment that has insignificant or no 
impact on the whole production line.

Preventive maintenance (PM) is the next stage of 
maintenance approach evolution. PM is a time-based 
approach where inspection and replacement/repair 
works are scheduled and conducted regularly before any 
failure can happen. It aims to avoid system failures during 
operation, especially when such an event is costly and/or 
dangerous. PM is the dominant maintenance policy used 

in industry. For systems such as transportation, production, 
or critical infrastructure, the time-based inspection and 
maintenance policies can improve performance, increase 
reliability and capability of assets concerned, and reduce 
the cost of assets running [14]. PM, however, is not always 
cost-effective. Because maintenance work is carried out 
on a time basis regardless of equipment’s conditions, it 
can lead to a high workload and cost if the equipment is 
still working correctly. Another disadvantage of PM is the 
infant mortality of equipment induced by human error 
during preventive maintenance work.

The next level of maintenance approach evolution is 
condition-based maintenance (CBM), and its improved 
version which is the so-called predictive maintenance 
(PdM). The PdM approach uses advanced analytics 
techniques to predict faults or failures in a deteriorating 
system to optimise maintenance efforts by monitoring 
equipment operating conditions and performances to 
detect any signs of wear or deterioration leading to a 
component's failure [15, 16]. More than just monitoring 
the basic condition of equipment, the main objective 
of PdM which is to predict the remaining useful life of 
machines using historical data is one of the promising 
areas of machine prognosis which could lead to significant 
maintenance optimisation and cost savings. 
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Figure 2. Evolution of maintenance approaches [3].
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PdM approaches have been extensively applied in 
industries for handling the health status of equipment 
by detecting early signs of failure in advance, enabling 
maintenance measures to be taken ahead of time, which 
allows the saving of more costs because repair after failure 
is always more expensive than maintenance in advance 
[17]. According to data from McKinsey [18], PdM tools can 
reduce manufacturing machine downtime by 30% - 50% 
and increase machine life by 20% - 40%. Besides, PdM 
initiatives enable organisations around the world to save 
USD 17B in 2018 globally [19].

In PdM, the optimal time point for maintenance 
actions is predicted by analysing the system’s health 
state and historical maintenance data to make a timely 
repair to avoid costly repairs due to system breakdown 
and premature maintenance activities which may induce 
infant mortality. The PdM approach is used in industrial 
sectors where reliability is paramount, like nuclear power 
plants, transportation systems, or emergency systems [3]. 
The most used monitoring and diagnostic techniques 
include vibration monitoring, thermography, tribology, 
and visual inspection. 

On the other hand, proactive maintenance emphasises 
keeping assets and equipment in top conditions by 
identifying potential problems and addressing them as 
early as possible. That is one of the main reasons why 
proactive maintenance is considered different from other 
approaches that help reduce maintenance costs and 
risk of property damage. Some examples of proactive 
maintenance activities are: (i) applying anti-corrosion 
coating to metal surfaces; (ii) performing an inspection 
for cracks, leaks, and rust; (iii) lubricating the machine 
to reduce wear and diffusion corrosion and (iv) applying 
sealant for junction boxes to prevent water ingress. In 
proactive maintenance approach, possible causes of 
equipment failure are analysed, and works are carried 
out to eliminate those causes in very early stages (e.g., 
designing, installation, and commissioning stages), which 
definitely distinguish proactive maintenance from other 
approaches.

3. ML approach in PdM

In PdM approach, equipment health is continuously 
monitored and analysed in real-time. Lei et al. [20] 
divide the process of diagnosing heath of machinery 
into four steps: (i) data acquisition; (ii) health indicators 
construction; (iii) health stage division; and (iv) remaining 
useful life prediction.

In data acquisition phase, the measured data, such as 
vibration, current, temperature, or pressure signals, are 
collected from sensors to monitor the health condition 
of machinery. In the next step, health indicators (HI) 
are constructed to represent the health condition of 
machinery using statistics, signal processing, or artificial 
intelligence techniques. Then, the HI will be analysed and 
classified into two or more health stages (HS) depending 
on HI degradation trends. In the final step, the remaining 
useful life is predicted to determine how much time is left 
until machinery reaches the end of its lifetime, based on 
which optimal maintenance activities can be scheduled.

3.1. Data acquisition 

Data acquisition is a prerequisite from which raw 
data can be processed and analysed later to solve a PdM 
problem. Data acquisition involves designing and sizing 
the appropriate system architecture to be installed on 
the equipment to capture and store different sensing 
data. A data acquisition system consists of sensors, data 
transmission, and data storage devices. Depending on 
equipment types, different combinations of sensors 
are used so that the captured data can fully reflect the 
degradation process of machinery. Some commonly used 
sensors are accelerometers, acoustic emission sensors, 
infrared thermometers, current, temperature, and 
pressure sensors, etc. The captured data are transmitted 
into a PC or portable devices through a data transmission 
device and stored in a memory location or historian 
system for further analysis. With a rapid development of 
sensor and communication technologies, more advanced 
data acquisition devices have been designed and applied 
to modern industries.

One of the essential data acquisition techniques 
often discussed in ML algorithms is data pre-processing 
techniques. In this step, commonly used techniques for 
data pre-processing include data normalisation and noise 
removal, feature extraction, and feature selection. Feature 
extraction is the process of mapping the original dataset 
to new data space, including new attributes that contain 
more explicit information for performing PdM. There are 
two basic feature extraction methods commonly applied 
in PdM: data-driven and statistical techniques. 

With the data-driven technique, these feature 
extraction processes are performed automatically based 
on specific data sets (data-driven) using a machine 
learning model. The weakness of this approach is that 
a lot of data will be needed to train the model, and the 
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user may not be able to be interpreted or described the 
extracted attributes. Several proven examples of machine 
learning tools used for feature extraction include CNN 
[21, 22], autoencoder [22 - 24], or principal component 
analysis [25 - 27].

Feature extraction based on statistical theory is a 
classic and commonly used method in data studies. 
Statistical methods will usually be used first in surveying 
and understanding system performance trends from 
sensor data. Statistical methods can be performed in 
three types [27]: time domain, frequency domain, and 
time-frequency domain. Statistical methods in the time 
domain include monotony, trend, consistency, similarity, 
stability, or correlation. Many techniques can be used 
to extract these features, including peak value, the 
difference between the highest and the lowest values, 
mean absolute value, root mean square (RMS), crest factor, 
standard deviation, kurtosis, or distributed shape factor. 
The feature extraction of the time domain technique have 
many advantages - it is fast, simple, and can be used for 
many different types of device failures. The disadvantage 
of time-domain feature extraction is that it is susceptible 
to noise and often requires data pre-processing before 
extraction. The advantage of feature extraction in 
the frequency domain technique is its efficiency in 
representing anomaly information and equipment 
errors, which are not visible in the time domain. The 
disadvantage of the frequency domain technique is the 
need for specialised knowledge of device failures in the 
frequency domain, and this method cannot be universally 
applicable to all types of devices. The time-frequency 
domain technique is a powerful tool that allows analysing 
and representing essential features of the data spectrum 
over time. Time-frequency domain feature extraction 
method is generally not affected by noise. However, some 
of its disadvantages are high computational cost, and 
the difficulty in determining the parameters of the data 
transformation process from the original time domain to 
the time-frequency domain. Statistical approaches have 
been widely applied in predictive intelligence problems 
and achieved many positive results [28, 29].

After collecting these values, we can do one more 
step called feature fusion or feature aggregation. This 
step combines the features extracted from the above 
statistical method to create more complex features with 
better data representation. For example, we can use other 
mathematical formulas [28] or genetic algorithms [29] to 
combine features.

3.2. Health indicator construction

After extracting the features, the next step is to 
determine the health indicator. Indeed, a health indicator 
represents the health state of machinery in real-time, 
taking into account different kinds of condition monitoring 
signals, such as vibration, current, and acoustic emission 
signals. HI construction plays a significant role in PdM. A 
suitable HI can help simplify the prognostic modelling 
and produce a more accurate prediction. In addition, 
from the HI information, specific methods can be devised 
for estimating the remaining useful life of the device. HI 
can be derived from monitoring signals using statistical 
methods or signal processing methods, such as RMS of 
vibration signals. In fact, machines are often monitored 
by multiple sensors. While analysing a high-dimensional 
dataset, different AI techniques can be employed to fuse 
those multi-sensor signals into an indicator representing 
the machinery's degradation trend.

In a study by Lei et al. in 2018, there are two main 
techniques to develop the HI [30], including (i) physical 
HI (PHI) relating to physical faults of the machine and 
usually extracted from the sensor using statistical or 
data processing techniques; (ii) virtual HI (VHI) built by 
combining many physical indicators or the different 
sensors. VHI usually carries no physical implication 
about the device but only information about the failure 
tendency of the device in a virtual manner.

Principal component analysis (PCA) is one of the most 
popular techniques for HI construction. PCA is a linear 
dimension reduction technique that uses an orthogonal 
transformation to convert a set of observations of possibly 
correlated or dependent variables into a set of linearly 
uncorrelated variables called principal components. 
Some of the significant studies are the construction of 
an HI using PCA to reduce the dimensions of the feature 
sets and subsequently calculate the deviations between 
unknown states and the healthy state [25], using PCA 
combined with isometric feature mapping to construct 
an HI for cutting tools [26], and fusing multiple features to 
calculate the T2 statistics as an HI of bearings [27]. 

Self-organising map (SOM) is another widely 
used technique for HI construction. The SOM is a non-
supervised learning neural network that produces a 
low-dimensional representation of a higher-dimensional 
dataset by organising itself according to the nature 
of the input data. The SOM technique was introduced 
into HI construction by Qiu et al. [31] for the condition 
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monitoring of roller bearing. Some authors also used the 
SOM technique for HI construction. Hong et al. [32] used 
wavelet packet decomposition (WPD) and empirical mode 
decomposition (EMD) to extract entropy sequences from 
original vibration signals and use them as input vectors 
of the SOM network. The confidence value derived from 
the SOM is then used as an HI of bearing. Lei et al. [33] 
trained the SOM by the feature vector in the operational 
stage. Then the feature vector under an unidentified 
condition is compared with the weight vector of its best 
matching unit (BMU) in the SOM. Liao et al. [34] used 
the Restricted Boltzmann Machine algorithm to extract 
features from the dataset and compare them with the 
weight vectors of all the units in the baseline map. The 
distance to the baseline map is calculated as minimum 
quantisation error (MQE), used as the machine’s health 
value. And Huang et al. [35] trained the SOM network 
using 6 vibration features and used the MQE indicator 
derived from SOM as an HI.

Mahalanobis distance (MD) is used in some 
publications as an HI construction technique. MD 
generalises multivariate dataset by finding how many 
standard deviations away a point is from the mean of 
the multivariate distribution. Wang et al. [36] utilised 
Mahalanobis distance to construct HI from 14 different 
statistics into a new feature to reflect the degradation 
of the bearing. Jin et al. [37] calculated the energies of 
wavelet coefficients and fused them by calculating their 
Mahalanobis distance with reference to the healthy 
one. Kumar et al. [38] also constructed an HI based on 
Mahalanobis distance to monitor bearings. 

Researchers also explored different combinations of 
AI techniques for HI construction. Ocak et al. [39] used the 
wavelet packet decomposition (WPD), a time-frequency 
domain technique, in connection with the hidden Markov 
modelling (HMM) technique to develop a method for 
real-time tracking of bearing health and prognostic. HHM 
has also been successfully applied to many other fields, 
such as tool wear condition monitoring [40] and bearing 
diagnosis [41]. Shen et al. [42] constructed an HI that 
reflects the running state of the rolling bearing in real-
time and effectively guarantees the operation reliability of 
bearings using the fuzzy support vector data description 
(FSVDD) technique. Liu et al. [43] proposed an HI for 
bearings through phase space reconstitution combined 
with approximate diagonalisation of eigen-matrices. Guo 
et al. [44] constructed an HI that contains rich degradation 
signatures of bearings from six related-similarity features 

and eight time-frequency features using the recurrent 
neural network.

Besides using mathematical functions to define HI, 
another way is to compare the current state of the device 
to be monitored to that of a similar one. The selected 
devices are also working in the same environment and 
performing the same task. When the operating envelope 
of the two devices is the same, their HI will be the same.

3.3. Health stage division

Staged machine operation is the next step after 
determining HI. However, it is not always easy to separate 
the working states of the machine. In particular, if the 
device continuously works with a linear HI from start to 
finish, it is impossible to subdivide the device's different 
working stages. In that case, the working state of the 
device changes uniformly at a constant rate [30]. However, 
it does not mean that this is an unimportant step in the 
PdM application. With many other types of mechanical 
devices (such as journal bearings), the operating state of 
the equipment can be divided into two or more stages. 
With these devices, in the healthy stage, the HI readings 
are nearly constant, so there is no information about the 
failure trend of the device. Forecasting the RUL at this stage 
would be neither accurate nor necessary. RUL forecasting 
should only begin to be performed after the machine 
transitions from normal operation to deterioration due 
to failure or a so-called unhealthy state. Then, the division 
of working states makes sense and is used to determine 
the device's initial degradations and provide a reasonable 
transition time for the RUL estimation in PdM. 

HIs of machinery generally present varying 
degradation trends with the development of fault severity. 
Subsequently, the degradation process of machinery can 
be divided into different health stages (HS) according to 
the varying trends of HI. HS division is vital in machinery 
health diagnostics because it identifies the start time of 
the unhealthy stage, also known as the first predicting 
time (FPT), and triggers the remaining useful life (RUL) 
prediction [20].

In one-stage HS, the health of machinery shows 
gradual degradation, which can be described using a single 
degradation model. In this case, the HS division process is 
not required. In two-stage HS, the degradation trend shows 
two distinct stages: the healthy stage, where no fault occurs, 
and the unhealthy stage, where there is an accelerated 
degradation trend over time. In multiple-stage HS, the 
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unhealthy equipment stage is further 
divided into different stages according to 
the characteristics of degradation trends. 
HS division can classify the degradation 
process into one stage, two stages, 
multiple stages (Figure 3).

The most straightforward approach 
in HS division is to identify whether the 
HI exceeds a constant alarm threshold. 
However, using a constant alarm 
threshold may yield false alarms due to 
random noise interference [20]. Some 
publications used a clustering algorithm 
to derive an adaptive threshold to 
avoid this problem. A commonly used 
algorithm is K-nearest neighbor (KNN), 
a data classification approach that 
estimates how likely a data point is to 
be a member of one group or the other 
depending on what group the data points 
nearest to it are in a study by Ramasso et 
al. [44]. KNN is used to assess the system's 
discrete state (functioning mode) while 
using a multidimensional degradation 
signal. Other AI classification algorithms 
are also studied in different publications. 
Kamran et al. [46] developed a model 
using a fuzzy c-mean clustering 
algorithm that can adaptively estimate 
the health state of the system rather than 
with a fixed number of states. Liu et al. 
[47] trained a model by applying PCA to 
reduce the dataset dimension and then 
using fuzzy c-means to automatically 
extract knowledge about health state 
labels of all the time points. Scanlon et al. 
[48] used a K-means clustering algorithm 
to determine the boundaries between 
different states. 

The multi-stage degradation 
processes can also be described using 
discrete state transition models such as 
the hidden Markov model (HMM). The 
hidden Markov model is a probabilistic 
model attempting to explain or derive 
the probabilistic characteristic of any 
random process. It says that an observed 
event will not correspond to its step-

(a)

Figure 3. Degradation processes with (a) one stage, (b) two stages, and (c) multiple stages [20].
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by-step status but a set of probability distributions. 
HMM is also applied in the studies of Giantomassi et al. 
[49], Ramasso et al. [50], and Sloukia et al. [51]. Some AI 
classifiers are applied to multi-stage HS division as well, 
such as artificial neural networks [52 - 54] and support 
vector machine [55, 56]. 

3.4. Remaining useful life prediction

Prediction of the remaining useful life (RUL) of 
machinery is the most critical problem in the field of PdM. 
The RUL of machinery is defined as “the length from the 
current time to the end of the useful life” [57]. The primary 
task of RUL prediction is to forecast the time left before 
the machinery loses its operation ability based on the 
condition monitoring information. It is the last technical 
process as well as the last goal of machinery prognostics. 
Approaches for RUL prediction can be categorised into 
physical model-based approaches, statistical model-
based approaches, and AI approaches.

Physical model-based is a classical approach that 
describes degradation processes of machinery through 
building mathematical models based on the failure 
mechanisms or the first principal damage [58]. The 
parameters of the physical models reflect the material 
properties and stress levels, which are generally obtained 
by experiments or finite element analysis. To provide an 
accurate estimation of the RUL physical model-based 
approach, it is required that the model is developed with 
a complete understanding of the failure mechanisms 
and effective estimation of model parameters. However, 
it is difficult for some complex mechanical systems to 
understand the physics the damage, which restricts the 
application of these approaches [20].

Statistical model-based approaches, also known as 
empirical model-based approaches, estimate the RUL of 
machinery by establishing statistical models based on 
empirical knowledge [57]. The statistical model-based 
approach does not rely on physics to construct RUL 
prediction models. Rather, the RUL is predicted by fitting 
available observations into random coefficient models or 
stochastic process models under a probabilistic method. 
In the RUL problem, this method uses probabilistic 
statistical models to represent the relationship between 
variables in the state of the device. Random variances are 
generally introduced into model parameters to describe 
the uncertainties caused by different kinds of variability 
sources, such as temporal variability, unit-to-unit 

variability, and measurement variability [59]. Therefore, 
the statistical model-based approaches effectively 
describe the uncertainty of degradation process and its 
influence on RUL prediction.

AI approaches attempt to learn the machinery 
degradation patterns using AI techniques from available 
observations instead of building physical models or 
statistical models. They can deal with prognostic issues 
of complex mechanical systems whose degradation 
processes are challenging to be interrelated by physical 
models or statistical models. Therefore, they are attracting 
more and more attention in the field of machinery 
prognostics. The results of AI approaches are hard to 
explain because of the lack of transparency; thus, these 
techniques are consistently named “black boxes” [20]. The 
commonly used AI techniques in machinery prognostics 
include artificial neural networks, neuro-fuzzy systems, 
support vector machine, K-nearest neighbour, and 
Gaussian process regression (GPR), etc. 

The artificial neural network is an ML reasoning 
technique inspired by the working process of human 
brains. It is a collection of nodes, also known as artificial 
neurons, in a complex structure of the input, hidden, 
and output layers. In ANNs, different layers may perform 
different transformations on their inputs. Input layer 
nodes pass information to hidden layer nodes by 
activation functions. Subsequently, the hidden layers 
apply weighting functions until some threshold of the 
hidden layer is reached. Finally, the result is passed to the 
output layer. Because ANNs can learn complex non-linear 
relationships by training the multi-layer networks, they 
have a good performance in dealing with complex systems 
and become the most used AI techniques in machinery 
RUL prediction. Two widely used ANNs are feed-forward 
neural network and recurrent neural network, which 
are classified based on the architecture of layers in the 
network. The difference is illustrated in Figure 4.

The feed-forward neural network (FFNN) is a class 
of ANNs, where inputs are processed forward. Sbarufatti 
et al. [60] combined FFNNs with sequential Monte-Carlo 
sampling to predict the RUL of fatigue cracks. Pan et al. [61] 
and Xiao et al. [62] used an FFNN to conduct multi-step 
ahead prediction for the bearing health states. Wang et al. 
[63] used a three-layer FFNN to predict the future HIs and 
input the predicted HIs into a PH model to estimate the 
hazard rate and survival probability. The results showed 
that RUL can be predicted with high accuracy in the 
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incipient degradation phase and trace the degradation 
well with a limited amount of data.

On the other hand, the recurrent neural network (RNN) 
is another class of ANNs that have many applications 
in solving time-series or sequential data problems. 
Unlike FFNN, which assumes inputs and outputs are 
independent, RNN has a recurrent connection in the 
hidden state that makes the output of RNN depend on 
the prior or previous elements within the sequence. RNN 
method is widely used in RUL prediction because of its 
ability to deal with detailed time-series data. As illustrated 
in many studies, this method showed good performance, 
such as the recurrent radial basis function network to 
predict the RUL of machinery by Zemouri [64]. Malhi et 
al. developed a competitive learning-based approach to 
revise the training technique of RNNs that helps improve 
the long-term prediction accuracy [65]. In addition, Peng 
et al. improved the RNN model by replacing a hidden 
layer using a large sparse reservoir to develop a new RUL 
prediction approach [66]. Liu et al. proposed an enhanced 
RNN for RUL prediction by improving RNNs’ memory 
property [67]. 

The ANN networks still have limitations in terms of 
their low transparency and the requirement of a large 
dataset for high-quality training process, which are 
difficult to capture in industrial applications. In addition, 
their structures and parameters are generally initialised 
randomly or specified manually, which reduces their 
generalisation ability among different cases [20].

The neural fuzzy (NF) approach is based on the 

fuzzy system trained by algorithms derived from neural 
networks. The basic idea behind this NF system is that it 
combines the human-like reasoning style of fuzzy systems 
with neural networks' learning and connectionist structure 
[69]. The NF-based time-series forecasting approach was 
proposed by Jang et al. [70]. Wang et al. [71] adopted the 
NF system to develop an online prognostic approach 
for different kinds of gear faults. Wang [72] further 
improve this approach from several aspects to enhance 
its forecasting performance. NF systems take advantage 
of both the expert knowledge and the intelligent ANNs, 
thus being competitive candidates for machinery RUL 
prediction [73 - 77]. However, they still need lots of high-
quality training data.

Support vector machine (SVM) is a kind of ML 
technique based on the statistical learning theory 
proposed by Vapnik [78]. Different kinds of SVM have 
been applied to the RUL prediction of machinery, such as 
the least square-SVM [79], one-class SVM [80], and multi-
class SVM [81]. Widodo et al. [82] trained an SVM model 
using both the censored and the complete data and 
predicted the survival probability of machinery. Tran et al. 
[83] integrated an SVM-based RUL prediction module into 
an intelligent condition-based maintenance platform. In 
addition, support vector regression (SVR) is the standard 
application form of SVM in prognostics [83]. Benkedjouh 
et al. [84] used the SVR to map the HIs into non-linear 
regressions and then fitted the obtained regressions 
into power models for RUL prediction of machinery. 
Liu et al. [85] developed a modified probabilistic SVR to 
predict the degradation processes of nuclear power plant 

Figure 4. Comparison of RNN (a) and FFNN (b) [68].

(a) (b)
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components. Fumeo et al. [86] developed an online SVR 
model for the RUL prediction of bearings by optimising 
the trade-off between accuracy and the computing 
efficiency. 

Compared to ANNs, SVM are superior in dealing 
with the issues of small sample sizes. Thus, they may be 
more suitable for the issues of RUL prediction where 
only limited measurements are available. However, the 
performance of SVM is highly dependent on the selected 
kernel functions and parameter optimisation process.

Gaussian process regression (GPR) is an ML technique 
that implements Gaussian processes for regression 
purposes [87]. Gaussian processes are cumulative damage 
processes of random variables with joint multivariate 
Gaussian distributions. Many regression models have 
been published recently, such as introducing theoretical 
details and the flexibility of the GPR in non-linear 
regression [88], predicting RUL by GPR [89], applying 
GPR with three different covariance functions for RUL 
prediction of bearings [32] and predicting the degradation 
trends of rolling element bearings using an integrated 
GPR model [90]. In contrast to the above AI techniques, 
GPR is highly adaptable and suitable for RUL prediction 
problem of high-dimension and small-size datasets [91]. 
The major drawback of GPR is that it generally requires 
heavy computational work.

3.5. Challenges for PdM using ML in Vietnam

In essence, each device has many different failure 
modes and must be tested in laboratory to produce the 
most complete and standard datasets. During normal 
operating conditions, these figures are difficult to obtain. 
There can only be specific failure modes. In addition, it is 
necessary to aggregate data on equivalent machines. It 
is challenging to compare and synthesise data in many 
cases due to the unavailability of machines in most 
companies. Where possible, oil and gas companies, 
especially in Vietnam, need to collaborate and share 
data about machinery to support the development and 
research of PdM.

Infrastructure for data acquisition is not enough 
due to high installation and maintenance costs. 
Instrumentation is often poorly equipped or does not 
have a proper acquisition system to collect data for a long 
time. Moreover, special data acquisition equipment such 
as vibration analyser, ultrasonic sound measurement, and 
oil sampling analyser is typically expensive, dependent 

on advanced technology or requiring intensive training 
to use. Recently, PdM applications often used AI and ML. 
Due to the lack of specialised research facilities for PdM 
in Vietnam, there will be many difficulties and challenges 
for the technology to be applied in the country. However, 
the benefits it brings if successfully implemented are very 
desirable.

4. Conclusion

PdM practices become more and more popular in 
many industrial sectors because of their effectiveness 
in reducing unnecessary maintenance operations 
and improving machinery reliability. With the recent 
advancement of Industry 4.0, ML has found wide 
applications in PdM practice to assist humans in 
processing, continuously monitoring and analysing 
equipment’s health. This paper has discussed the practice 
of PdM and reviewed the applications of some state-of-
the-art AI techniques that have been studied in this field. 
Different AI techniques are structurally discussed in the 
four technical steps of the machinery health prognostics 
process, including data acquisition, HI construction, HS 
division, and RUL prediction. 

BIENDONG POC is aiming to deploy PdM solutions 
for monitoring, maintaining, and tracking equipment's 
reliability and performance in a plant by ML modelling. 
The monitoring and quick identification of failures help 
make decisions and plans for maintenance and enable  
support for continuous performance, health surveillance, 
and focus on performance degradation as a leading 
indicator of potential equipment problems. Therefore, it is 
necessary to review research achievements and trends in 
PdM to assess the current status and orientate the focus of 
research at BIENDONG POC.
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1. Introduction

After years of production, the oil and gas industry 
is facing an increasing demand for decommissioning 
which requires large costs and negatively affects the 
surrounding environment. Though worldwide estimates 
vary greatly, on average, decommissioning (decom) a 
complete platform may cost USD 15 million to USD 20 
million in shallow waters (such as in the Gulf of Mexico), 
about GBP 30 million (USD 40 million) for small platforms, 
and GBP 200 million (USD 269 million) for large structures 
in deep waters (such as in the UK North Sea) [1]. According 
to Rystad Energy [2], the total value of the global pool of 
decom projects that will accumulate through 2024 could 
reach USD 42 billion, dominated by the UK North Sea. 
Besides, post-decom environment impacts are also of 
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great concern since a typical eight-leg structure provides 
a home for 12,000 to 14,000 fishes, and a typical four-leg 
structure provides 2 to 3 acres of habitat for hundreds 
of marine species, according to a study by the Coastal 
Marine Institute [3]. Therefore, one of the critical issues in 
the oil and gas industry is how to reduce the decom cost 
and protect the environment.

Conventionally, late-life offshore oil and gas assets 
must be decommissioned if they cannot work longer or be 
reused/repurposed. If the scrap steel market is stable and 
developed, contractors will get scrap revenue from the sale 
[4]. Otherwise, the scrap yards will charge the contractors 
to unload steel platforms [5]. Operating contractors are 
responsible for executing safe and environmentally sound 
decommissioning when operations cease. Nevertheless, 
almost all scrapping yards are on beaches so pollutants 
can cause serious environmental harm with long-term 
effects for occupational, public, and environmental health 
[4]. A “green” solution for offshore oil and gas assets is 

Summary
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the best solution to deal with challenges of decarbonisation and 
decommissioning.

In recent years, international organisations (such as WEC, Nexstep, 
and North Sea Energy) and countries (such as Norway, UK, and the 
Netherlands) have been appreciating the role of offshore oil and gas 
assets in energy integration. By sharing infrastructure, the levelised 
costs of new technologies will reduce and promote the realisation of 
the ideas. In the WEC North Sea Conference in January 2017, market 
parties considered electrification, Power-to-gas (PtG), and carbon 
capture and storage the most potential technologies. Electrified 
platforms mean that energy is consumed at sea rather than transport 
to shore; PtG technologies enable energy storage and efficient 
transportation to shore; and CCS technologies reduce greenhouse gas 
emission [6 - 8]. With PtG technology, surplus electricity produced at 
offshore wind farms could be converted into hydrogen, methane, or 
other gases, and transported to shore using already existing pipelines. 

In which, green hydrogen is the most viable 
option of PtG technologies and is being 
studied and tested by some countries such as 
the UK and the Netherlands.

Similarly, the Oil and Gas Authority (OGA) 
has pointed out that energy integration 
between oil and gas and renewable energy is 
the main solution to achieve net-zero emission 
by 2050 [9, 10]. The North Sea provides several 
energy options which can all be integrated: 
wind farms, oil and gas platforms, tidal and 
wave energy, green hydrogen, floating solar, 
OTEC (ocean thermal energy conversion). 
Offshore oil and gas assets can play an 
important role, for example in the storage 
of CO2, and the production of hydrogen and 
renewable energy [11]. The OGA forecasted 
that oil and gas will remain an important 
part of the energy mix for the foreseeable 
future, and the oil and gas industry will go 
much further in reducing its carbon footprint 
from operations. A more integrated offshore 
energy sector, including closer links between 
oil and gas and the offshore renewables, will 
be vital to accelerate the energy transition [9]. 
Five potential concepts that OGA mentioned 
to deal with energy transition include 
Electrification, Gas-to-wire (GtW), CCUS/CCS, 
Hydrogen, and Energy Hubs. 

According to WEC, value is created 
through the delay of decommissioning costs 
(~EUR 1 billion). Cost reduction for CCS could 
save EUR 14 billion over the 2017 - 2050 
period. CCS as well as electrification of existing 
O&G platforms contribute to CO2 reduction. If 
25% of platforms would be electrified, then 
4 Mt CO2 could be avoided over the 2017 - 
2050 period. For CCS technology, based on 
a "medium" roll-out scenario, CO2 emissions 
could be reduced by approximately ~1,200 
Mt in the 2017 - 2050 period [6]. According to 
Nexstep, offshore asset reuse will reduce the 
decommissioning cost in the Netherlands by 
30% [11]. However, studies show that only 
10% of the platforms in the Netherlands are 
suitable for reuse.

Figure 1. Opinion of market parties on prolonged and re-use options [6].

Figure 2. Technology screening for five concepts in the UK [9].
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As can be seen, electrification, hydrogen, and CCS are 
the potential concepts for energy integration. However, 
these technologies are still at a very early stage of 
development and therefore hurdles exist in all areas. In 
many cases, there are no example business cases to learn 
from and often technologies are not yet available, or not 
designed for offshore use [6]. At present, there are only 
a few pilot projects in Norway and the Netherlands, and 
research projects in the UK. The next part presents the 
status of these potential concepts of energy integration 
for offshore oil and gas assets.

2. Potential concepts of energy integration for offshore 
oil and gas assets

2.1. Electrification

Electrification of oil and gas platforms is a way in 
which energy can be consumed efficiently at sea [6]. This 
idea will help increase energy efficiency and cut down a 

large amount of carbon emissions. The offshore oil and gas 
platforms are using gas- or diesel-powered generators to 
supply their own electricity needs. Due to the space and 
weight limitations of the platform, these generators are 
designed with minimum power generation facilities. This 
means that the energy conversion efficiency rate is low 
and carbon emissions relatively high. This kind of offshore 
generator emits more CO2 than an onshore generator. To 
reduce carbon emissions of offshore oil and gas activities, 
electrification is considered the optimal solution.

In addition, old platforms can be converted into 
electrical substations for floating offshore wind farms 
at the end of field life. The conversion will be more 
advantageous if the offshore platform is electrified. 
Electrification for offshore platforms is still in the early 
research and implementation stages. In the North Sea, 
three electrification options for offshore oil and gas 
platforms are suggested.

Figure 3. Benefits of repurposing old O&G assets in the North Sea [6].
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Table 1. Three options for offshore platform electrification in the North Sea [9, 12]
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In the Netherlands, the transmission system operator (TSO) 
TenneT is the designated offshore grid operator with the statutory task 
to create a dedicated offshore grid to connect offshore wind energy 
farms to the onshore grids. For many platforms further offshore, it 
would significantly reduce their costs of obtaining a grid connection if 
it would be possible to tie in and connect to an offshore platform [12]. 
Besides, the North Sea Energy program is researching the potential 
connection between offshore platforms and wind farms.

Electrification can lead to lower operating costs for platform 
operators and eliminate emissions from traditional generators. 
According to OGA, the oil and gas industry could significantly reduce 
GHG emission (by approximately 2 - 3 MtCO2e pa) by sourcing power 
for its UKCS platform either from the shore or from offshore renewables. 
While brownfield electrification projects could face high Capex, which 
could be significantly reduced through synergies with wind power 
(could lead to breakeven), while greenfield (new assets) electrification 
can add value through Capex savings to offset power connection cost 
(BCR > 1) [10]. 

It is obvious that electrification is an essential response by the O&G 
industry to net-zero emission. Reducing emissions will be an urgent 
mission when IOCs and NOCs are dealing with energy transition. 
Sourcing electricity for O&G directly from offshore renewables helps 
reduce project lifecycle costs. Furthermore, lower operating costs 
can extend the lifetime of the field and increase the opportunity to 

utilise the platform for other future potential 
purposes, such as offshore hydrogen 
production.

2.2. Green hydrogen

Green hydrogen is produced using 
renewable energy and electrolysis to 
split water. With PtG technology, surplus 
electricity produced at offshore wind farms 
could be converted into hydrogen and 
transported to shore using already existing 
pipelines [6]. This technology is an efficient 
solution for storing and transporting energy 
to shore. The existing offshore pipelines 
could be put into a new production use 
instead of installation of new offshore power 
cables. Because the transportation capacity 
of pipelines is much larger than that of 
power cables, transportation losses are less, 
and grid stability is not a concern. However, 
quantitative evaluation of this idea is difficult 
because limited real-life experience is 
available. The offshore hydrogen production 
model is being studied and tested by some 
countries, such as the UK and the Netherlands.

In the UK, the results of OGA research show 
that offshore green hydrogen generation 
may also be placed offshore, potentially 
repurposing legacy oil and gas platforms. 
Depending on distances from shore, this may 
provide efficient energy transmission [9]. The 
offshore green hydrogen option consists of 
three steps: (1) wind-powered electrolysis on 
offshore platforms; (2) hydrogen storage in 
abandoned fields or salt caverns; (3) hydrogen 
transportation with re-used pipelines. As can 
be seen, all offshore oil and gas assets, such as 
platforms, pipelines, and reservoirs, are fully 
utilised in the hydrogen production process. 
However, this study also indicates that green 
hydrogen is not economically attractive today 
(BCR ~ 0.7) due to high electrolysed costs. 
OGA expects that these costs will be reduced 
to achieve project breakeven by technology 
improvements in this decade [10].

In the Netherlands, North Sea Energy 
also shows that power can be converted into 
hydrogen using electrolysis [13]. Electrical 

Figure 4. Potential emission reduction from O&G power generation [10].

Figure 5. Schematic overview of conversion to green hydrogen [13]. 
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energy derived from wind farms is transported to an offshore platform 
to produce hydrogen. The electrical energy (electrons) is converted 
into chemical energy in the form of gas (molecules). Seawater is 
desalinated first and filtered into demi water, which will be used for 
electrolysis. This water is then electrolysed into hydrogen and oxygen 
gas. From the mining rigs, hydrogen is compressed and transported 

ashore through new or existing pipelines. 
According to North Sea Energy, the benefit 
of this idea extends the economic lifetime 
of offshore oil and gas assets, saves costs 
on offshore cabling systems, and improves 
efficiency in storage and transportation of 
energy to shore.

Currently, this idea has been investigated 
and tested through the PosHydon project in 
the Netherlands. The PosHydon project is the 
world's first offshore green hydrogen project 
on an operational oil and gas platform, using 
a facility in the Dutch North Sea. It is one of the 
actions of the Dutch government to promote 
offshore energy integration to achieve the 
goal of reducing 95% carbon emission by 
2050. On 22 July, 2021, this project received 
EUR 3.6 million (USD 4.25 million) subsidy 
from the Netherlands Enterprise Agency [14]. 
The cost of the pilot project is in the region of 
EUR 10 million (USD 11.58 million) in a 2-year 
duration pilot (ending by the end of 2023). 
PosHydon, which will be hosted on Neptune 
Energy’s Q13a-A platform, 13 km off the 
coast of Scheveningen in the Hague, aims to 
validate the integration of offshore wind, gas, 
and hydrogen.

The PosHydon project is a pilot project 
to produce green hydrogen using proton 
exchange membrane (PEM) electrolysis 
technology. In this method, the electrolyte is 
an acidic polymer membrane that allows the 
exchange of protons (H+). At the anode, water 
is oxidised to O2 and releases protons that 
flow across the membrane and are reduced at 
the cathode to form H2. The 1 MW electrolyser 
will produce a maximum of 400 kg of green 
hydrogen per day.

Green hydrogen production will take 
place on the operating Neptune Q13a-A 
platform. This platform has been electrified 
and is a zero-carbon platform (16,000 tons 
of CO2/year). An old sewage pipe under 
the sea is reused to carry an electrical cable 
connecting the Hague's electricity grid to 
the platform. Thus, during this test phase, 
hydrogen is produced by using onshore 

Figure 6. Pilot PosHydon on Neptune Energy’s Q13a-A platform [15].

Figure 7. Assumption for PosHydon project [16].
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Table 2. Overview of technical characteristics of Neptune Energy’s Q13a-A [16]
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electricity. In the future, the platform can be directly powered 
by offshore wind. Green hydrogen products will be mixed with 
extracted gas and then transported to shore through the existing 
gas pipeline system. The future operation and maintenance costs 
can be shared between hydrogen and gas producers. The project 
studies how hydrogen can be mixed with natural gas in existing 
gas pipelines, testing the best percentages for onshore processing 
[17], and specifying the mixing percentage of hydrogen in the 
natural gas suitable for the onshore distribution grid [18]. Here are 
some key technical characteristics of the Q13a-A platform used for 
testing offshore green hydrogen production and transportation. 

According to the implementation progress, the PosHydon 
project is onshore electrolyser testing and offshore installation, 
and ready to start up in Q4 2021. If the project is successfully 
implemented, it will be a good lesson for countries in the North Sea 
region and the world. Furthermore, some platforms and pipelines 
could be given a second life in the energy transition and be used 
for power conversion and transportation of green hydrogen [19].

2.3. Carbon capture and storage (CCS)

The CCS technology will provide an opportunity to reuse/
repurpose offshore oil and gas assets to store CO2 under the 
empty oil or gas fields. CO2 will be captured and transported from 
the shore through new or existing pipelines. Then CO2 is slowly 

injected into the reservoir, which will increase the 
pressure in the reservoir. Injection will continue 
until the reservoir’s pressure almost reaches the 
same level as the original natural gas pressure. The 
reservoir pressure will be kept at a lower level than 
the original one, to ensure the natural geological 
closure of the reservoir [13]. If the platform is 
already electrified, the offshore compression could 
easily be installed. If the platform is applying the 
CO2-EOR method to prolong the field lifetime, the 
infrastructure is very convenient to develop CCS 
technology. Almost all offshore oil and gas assets, 
such as platforms, pipelines, wells, and reservoirs, 
will be utilised to reduce costs and promote the 
offshore CCS technology.

According to WEC, the CCS projects in the 
North Sea have a potential value of EUR 14.4 
billion over the period from 2020 to 2050. This 
value includes the cost savings resulting from the 
reduction in CCS costs from EUR 70/ton of CO2 in 
2017 to EUR 45/ton of CO2 in 2030. From 2020 to 
2030, the annual CO2 storage will increase linearly 
from 4 Mt to 46 Mt storage per year and remain 
constant at 46 Mt per year from 2030 [6]. 

In the North Sea, Norway and the UK are 
two countries that are studying the possibility 
of developing CCS when taking advantage of 
offshore oil and gas assets. Below is a summary of 
the research results of these two countries.

Norway

Norway has a long history of carbon capture 
and storage from the world's first offshore 
CCS project “Sleipner” in 1996. The Norwegian 

Figure 9. The Norwegian full-scale CCS project Longship [22, 23].
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government considers CCS an important solution to achieve 
net zero emissions by 2050. Since 2005, Gassnova, a state-
owned enterprise under the Norwegian Ministry of Oil and 
Energy, has promoted technological development, reduced 
costs, and enabled CCS development projects through 
knowledge sharing and technology transfer with partners 
[20]. In 2016, the results of a feasibility study on CCS solutions 
conducted by Statoil were released by the government. This 
study demonstrated the feasibility of combining components 
that make up the value chain and can be realised into a full-
scale CCS project. Gassnova was assigned to represent the 
Norwegian government to further develop this idea. In 
December 2020, the Norwegian government made a funding 
decision and named the project Longship [21]. The project's 
ambition is to be able to store 1.5 million tons of CO2 per year. 
So far, this is the largest project in the history of Norway with a 
total cost of about USD 2.83 billion (USD 1.93 billion investment 
cost and a 10-year operating cost of USD 0.9 billion) which the 

Norwegian government is expected to provide USD 
1.89 billion [22]. 

The Longship project consists of three main 
parts:

- CO2 capture at Norcem Cement Plant 
(belonging to Heidelberg Group) in Brevik;

- CO2 capture at the Fortum Oslo Waste-to-
Energy Plant in Oslo;

- Combined transportation and storage 
solution, managed by Northern Lights JV DA.

The Northern Lights JV was launched in March 
2021 as a joint venture between Equinor, Shell, and 
Total. The Northern Lights project, which is part of 
the Longship project, is responsible for the transport 
of CO2 by ships and the permanent storage of CO2 in 
reservoirs located 2.5 - 3 km deep on the seabed. It is 
expected that phase 1 of this project will operate in 
mid-2024 with a capacity of 1.5 million tons of CO2/
year.

According to Gassnova, CO2 can be stored 
forever under depleted oil and gas reservoirs and 
salt aquifers. Offshore oil and gas assets have an 
important role in the CCS process. The existing 
pipeline transports carbon from shore to the 
compression station, are converted by platform, 
to compress CO2 into depleted reservoirs. In 2020, 
Gassnova expected the allocation of investment 
costs for carbon transport and storage as follows:

If late-life offshore oil and gas assets can be used 
Figure 10. Estimated investment cost spread across the physical elements of the transport and 
storage facilities [24].

Figure 11. Notional CCS project [10].

Subsurface monitoring

Subsea equipment, 
umbilical & pipeline

CO2 receiving terminal

35%

33%

2%

15%

15%

Drilling & well (x1)

Ships (x2)

CO2 source

Compression

CO2 store 
(saline aquifer)

Out of scope

Normally 
unmanned 
platform

Re-used 
gas plant 
site

Export pipeline

2 subsea 
wells

3 wells
80 km

Transportation and storage (T&S)CO2 capture



69PETROVIETNAM - JOURNAL VOL 10/2021

PETROVIETNAM

for carbon transport and storage, there is potential for 
investment savings at this stage.

UK

The UK also considers CCS technology as an important 
solution to achieve net-zero emissions by 2050. To achieve 
this ambition, OGA has proposed a scenario of building 
CCS by 2050. Accordingly, OGA expects to increase annual 
compression capacity at a rapid growth rate from 5 million 
tons of CO2/year in 2025 to 69 million tons of CO2/year by 
2040, and 130 million tons of CO2/year by 2050. 

Under the OGA scenario, offshore oil and gas assets 
will be utilised in CO2 transport and storage:

- CO2 transport: Onshore gas plants can be converted 
into CO2 compressor plants, taking advantage of the 
existing pipeline system from gas plants to transport CO2 
to compressed air points. It is assumed that this pipeline is 
about 80 km long and 20'' in diameter.

- CO2 storage: Existing platforms and wells can be 
used to compress CO2 into empty reservoirs.

The OGA research results indicate that reuse of 
existing oil and gas infrastructure can lead to 20 - 30% 
capex savings, thus the transportation and storage 
costs around  GBP 12 - 30/ton of CO2 (USD 16 - 40/ton 
of CO2) could make CCS economically attractive to help 
decarbonise in the UK [10].

2.4. Lesson learned for late-life offshore oil and gas 
assets in Vietnam

Obviously, offshore oil and gas assets play an 
important role in energy integration which can help 
reduce production emission for the oil and gas industry, 
as well as accelerate the progress of CCS and green 
hydrogen in support of decarbonisation. Firstly, platform 
electrification could reduce emissions on oil and gas 
structures by using offshore electricity generated from 
wind farms. Secondly, surplus electricity produced at 
offshore wind farms could be converted into green 
hydrogen at the platforms and transported to shore by 
existing pipelines. Finally, CO2 is transported by pipeline, 
and injected into depleted offshore oil and gas fields. 

However, these new technologies are in the early 
stages of development with high capex, so it is necessary 
to maximise the utilisation of energy integration. By 
sharing offshore infrastructures, these new technologies 
have more opportunities to develop in the future. Due to 
the shortage of example business cases, it is difficult to 

generalise the technical requirements for offshore oil and 
gas assets. Based on existing documents, the offshore oil 
and gas assets in the North Sea often have the following 
technical characteristics:

- Water depth (WD): often in shallow water

 + 20 m: Neptune Energy’s Q13a-A in PosHydon 
project [16];

 + 29.6 m: project IJVERGAS [25];

 + Less than 50 m: 10% of platforms in the Netherlands 
that have been reused by Nexstep [11, 26].

- Distance from shore:

 + 51 km: Neptune Energy’s Q13a-A in PosHydon 
project [16];

 + 80 km: UK CCS development scenario [10].

- Type of platform: Mostly fixed platforms.

- Diameters of pipelines: 20” [10], 24” and 36” [25].

Compared to the above-mentioned, Vietnamese 
offshore oil and gas assets have similar characteristics 
[27], specifically:

- Water depth (WD): All production projects are in 
shallow water.

- Distance from shore: Structures are located far from 
the shore, but the infrastructure allows easy connection 
to shore through offshore pipelines. The distance from 
onshore of main pipelines in Cuu Long basin, Nam Con 
Son basin, and Malay - Tho Chu basin is 110 km, 371 km, 
and 298 km, respectively. 

- Type of platform: Mostly wellhead platforms (a kind 
of fixed platform), only one semi-submersible platform in 
Dai Hung field.

- Diameters of pipelines: ~ 26” for main pipelines.

- Density of distribution: All production projects are 
concentrated in the 4 main basins: Cuu Long basin, Nam 
Con Son basin, Malay - Tho Chu basin, and Song Hong 
basin. 

- Ability to connect to existing infrastructure: 
Pipelines are only connected internally in each basin.

- Oil/gas reservoirs: Offshore oil/gas reservoirs are 
connected to wellhead platforms. Therefore, CCS projects 
can reuse the offshore facilities to store CO2 in these 
empty reservoirs.
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- Ability to connect to offshore wind farms: 
According to draft Power Master Plan VIII [28], potential 
offshore wind plants will be located in the North, North 
Central, South Central, and Southern regions of Vietnam, 
corresponding to the Song Hong basin, Cuu Long basin, 
Nam Con Son basin, and Malay - Tho Chu basin. The 
potential offshore wind plants can be in more or less 50 
m of water depth in the South, South Central, and North 
Central regions.

If preliminary assessment, Vietnam offshore facilities 
can research the potential connecting oil and gas assets 
and renewable energy instead of decommissioning, 
especially late-life offshore oil and gas assets in the South. 
However, not all oil and gas assets can be reused for new 
technologies. In the Netherlands, only 10% of platforms is 
suitable for reuse/repurpose, but it can lead to 30% capex 
savings and million tons of CO2 pa emission reductions 
[11], which is a great driving factor to develop the new 
technologies.   

3. Conclusion 

Energy integration is a green solution reusing 
or repurposing assets for new technologies, such as 
electrification, green hydrogen and CCS, or promoting 
synchronous development of technologies, sharing 
offshore infrastructure, and reducing infrastructure 
investment costs. The energy sector can start making 
unified decisions about how to deal with end-of-life 
offshore oil production facilities. The late-life offshore oil 
and gas assets will have a new life and play an important 
role in dealing with climate change and gradually 
achieving decarbonisation goals. Integrating late-life 
offshore oil and gas assets and other offshore energy farms 
could reduce the costs and make the new technologies 
more economically feasible.

According to the North Sea’s case, the conversion 
of offshore oil and gas assets needs to have a long-
term strategy and follow a roadmap. In which, three 
important milestones need to be achieved: (i) minimising 
carbon emissions in offshore oil and gas exploitation 
through electrification technology; (ii) energy transition, 
connection, and development of green hydrogen and 
CCS technologies; (iii) connecting all energy sources to 
reach the committed carbon emission reduction target.

In general, the Vietnamese offshore oil and gas assets 
have similar technical characteristics with those in the 
North Sea. Therefore, there is an opportunity to have 

a green future for late-life offshore oil and gas assets in 
Vietnam. To turn the ideas into reality, more detailed 
studies will be needed. The studies should be conducted 
as soon as possible because Vietnam will face the wave of 
decommissioning in the next decade.
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Fertilizer production: Rising input material cost 

The World Bank’s latest Commodity 
Markets Outlook forecasts that 

energy prices - expected to average more 
than 80% higher in 2021 compared to last 
year - will remain at high levels in 2022 
but will start to decline in the second half 
of the year as supply constraints ease. 
Non-energy prices, including agriculture 
and metals, are projected to decrease in 
2022, following strong gains this year.

In 2021, some commodity prices 
rose to or exceeded levels not seen since 
the spike of 2011. For example, natural 
gas and coal prices reached record highs 
amid supply constraints and rebounding 
demand for electricity, although they are 
expected to decline in 2022 as demand 
eases and supply improves. However, 
additional price spikes may occur in the 
near-term amid very low inventories and 
persistent supply bottlenecks.

Crude oil prices (an average of Brent, 
WTI, and Dubai) are expected to average 
USD 70 a barrel in 2021, an increase of 
70%. They are projected to be USD 74 a 
barrel in 2022 as oil demand strengthens 
and reaches pre-pandemic levels. The use 
of crude oil as a substitute for natural gas 
presents a major upside risk to the demand 
outlook, although higher energy prices 
may start to weigh on global growth.

“High natural gas and coal prices 
are impacting the production of other 
commodities and pose an upside risk to 
price forecasts”, said John Baffes, Senior 
Economist in the World Bank’s Prospects 
Group. “Fertilizer production has been 
curtailed by higher natural gas and coal 

In the “Commodity Markets Outlook” report by the World Bank, energy prices 
soared in the 3rd quarter of 2021 and are expected to remain elevated in 2022, adding 
to global inflationary pressures and potentially shifting economic growth to energy-
exporting countries from energy-importing ones.

prices, and higher fertilizer prices have 
been pushing up input costs for key food 
crops”.

According to the World Bank [1], most 
fertilizer prices increased sharply in the 
third quarter of 2021 and continued rising 
in early November, reaching levels unseen 
since the 2008 - 2009 global financial crisis. 
Prices have been driven by a confluence of 
factors - strong demand, riging input costs 
(energy, materials), production cuts, and 
trade policies of several countries. Surging 
natural gas prices in Europe resulted 
in widespread production cutbacks in 
ammonia - an important input for nitrogen 

fertilizers - while escalating thermal 
coal prices in China led to a rationing 
of electricity use in some provinces and 
forced fertilizer factories to cut production. 
Energy prices also increased in the United 
States as Hurricane Ida hampered natural 
gas production in the U.S. Gulf Coast and 
several large fertilizer companies had to 
declare force majeure as production was 
halted. 

Urea prices reached levels unseen since 
2008 and DAP (diammonium phosphate) 
prices climbed to the highest since 2012, 
while potash prices saw historically large 
divergence across regional markets [1].

Figure 1. Fertilizer market developments [1].

B. Fertilizer input costs  A. Fertilizer prices  

D. Regional MOP prices  C. China’s fertilizer trade in 2021  

Sources: Bloomberg; General Administration of Customs of the People’s Republic of China; World Bank.  
A.B. Last observation is September 2021. 
A.C. DAP = diammonium phosphate. MOP = muriate of potash. 
D. cfr = cost and freight; fob = free on board. Last observation is October 15, 2021.
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According to the Chemical & 
Engineering News [2], in Illinois, the price 
of DAP, the most widely used phosphate 
fertilizer, rose by more than 78% over 
the past year, according to a 4 November 
report from the US Department of 
Agriculture. The price of two nitrogen-
based fertilizers, anhydrous ammonia and 
urea, more than doubled over the same 
period. Much of the price increase has 
happened since the beginning of October. 
Schnitkey noted that manufacturers have 
big incentives to produce more fertilizer, 
which could lower prices. But the price 
will also depend on more unpredictable 
factors, like the state of the Covid-19 
pandemic and the cost of natural gas.

As per mid October 2021 (14 October 
2021), the prices of both prilled urea and 
granular urea have increased as compared 
to mid September 2021. Specifically, 
prilled urea surged by USD 305/ton in the 
Baltic Sea, by USD 312/ton in the Black 
Sea, and by USD 330/ton in the Middle 
East.Granular urea increased by USD 277/
ton in the Middle East, and by USD 265 /
ton in SE Asia. On 14 October 2021, prices 
ranged from USD 620/ton to USD 780/ton 
for prilled urea and from USD 624/ton to 
USD 780/ton for granular urea. 

In the first 10 months of 2021, PVFCCo 
has operated Phu My Fertilizer Plant safely 
and stably, with the production reaching 

643,520 tons of Phu My urea (3% higher 
than planned), 137,330 tons of NPK (8% 
higher), 54,440 tons of NH3 (6% higher) 
and 10,520 tons of UFC 85 (3% higher). 

Regarding its sales in the same 
period, PVFCCo reported a volume of 
608.06 thousand tons of Phu My urea 
(95% of the plan), 35.47 thousand tons of 
CO2 (88%), 135.60 thousand tons of NPK 
(116%), 187.49 thousand tons of other 
fertilizers (116%), 56.53 thousand tons 
of NH3 (111%), 8.2 thousand tons of UFC 
85 (119%) and 0.6 thousand tons of other 
chemicals (112%). 

In 2021, PVFCCo faced difficulties since 
the prices of input materials have risen 
higher than planned: gas price by 34% 
(USD 6.33/ton vs. the planned USD 4.74/
ton, excluding VAT); the price of methanol 
(feedstock for UFC 85 production) by 
46%. The prices of raw materials for NPK 
production also soared sharply from the 
planned price: H2SO4 by 57%, H3PO4 by 
48%, DAP by 51%, and SA by 53%. 

By synchronously implementing 
solutions to optimise production and 
reduce costs, PVFCCo has achieved a total 
revenue of over VND 9,400 billion, which 
is 35% higher than the 10-month plan, 
and 13% higher than the 2021 plan; 
and contributed VND 421.3 billion to the 
national budget, which is 220% higher 
than the plan. 

PVFCCo has successfully launched 
two new lines of product formula, NPK 
Phu My 18-12-8+TE and NPK 18-10-
8+8S+TE, with the first batch of 5,000 
tons produced in November 2021. The 
two products will help diversify the high-
quality Phu My NPK product line and boost 
the total output, which is experiencing 
a spectacular growth in 2021 with an 
estimate exceeding 150,000 tons. 
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Urea prices are anticipated 
to decline marginally in 2022 as 
feedstock costs moderate. DAP 
prices are projected to remain 
elevated in the first half of 2022 on 
expectations of tight supply unless 
Chinese export restrictions are 
relaxed earlier than anticipated. 
MOP contract prices are forecast to 
surge in 2022 following significant 
increases in spot prices. 

World Bank

Figure 2. PVFCCo’s sales and production in the first 10 months (thousand tons).
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The International Energy Agency 

(IEA) said Brent prices may reach USD 
71.50 per barrel in 2021 and USD 
79.40 per barrel in 2022 [1], while U.S. 
Energy Information Administration 
(EIA) predicted that it would be 
around USD 72 a barrel in 2022 [2].

In Oil Market Report - November 2021 
reported by the IEA, global oil demand is 
strengthening due to robust gasoline 
consumption and increasing international 
travel as more countries re-open their 
borders. However, new Covid-19 waves 
in Europe, weaker industrial activity and 
higher oil prices will temper gains, leaving 
forecast for oil demand growth largely 
unchanged since last month’s report at 5.5 
million barrels per day for 2021 and 3.4 
million barrels per day in 2022 [1].

World oil supply is set to rise 1.5 
million barrels per day over November 
and December, with the US providing 
400,000 barrels per day of the gain. 
Saudi Arabia and Russia combined would 
account for 330,000 barrels per day in line 
with OPEC+ targets. Total oil supply had 
already leapt 1.4 million barrels per day 
m-o-m in October after the US rebounded 
from Hurricane Ida.

Global refining throughput is set to 

increase by almost 3 million barrels per 
day from October through December 
as seasonal maintenance wraps up. 
Refinery margins rose in October, driven 
by exceptionally tight product markets, 
despite the sharp gains in crude oil prices. 
Further ahead, refinery throughputs are 
expected to stabilise and generally hold 
flat in the first half of 2022 before the 
seasonal increase in 3rd quarter of 2022.

OECD total industry stocks plunged 
by 51 million barrels in September, with 
crude oil and middle distillate holdings 
accounting for most of the declines. In 

terms of regions, Europe led the draw-
down. At 2,762 million barrels, total 
OECD industry stocks stood 250 million 
barrels below the 5-year average and at 
their lowest level since the start of 2015. 
Preliminary data for October point to a 
marginal stock build.

Oil market drivers have begun to shift 
and benchmark crude prices are easing as 
a result. Brent crude futures were trading 
around USD 81 per barrel, down from a 
high of more than USD 86 per barrel in 
October. On physical markets, North Sea 
Dated prices rose in October by USD 9.15 
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Figure 1. World liquid fuels production and consumption balance [2].
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per barrel m-o-m to USD 83.54 per barrel 
and WTI at Cushing by USD 9.79 per barrel 
to USD 81.96 per barrel [1].

IEA reported that global oil production 
is already rising. In October, oil supplies 
leapt by 1.4 million barrels per day to 97.7 
million barrels per day, with the US post-
hurricane recovery accounting for half the 
increase. A further boost of 1.5 million 
barrels per day is expected over November 
and December even as OPEC+ disregarded 
pleas from major consumers to ramp 
up beyond a monthly allocated 400,000 

barrels per day to cool prices. Over this 
period, the US is now poised to provide the 
largest increase in supply of any individual 
country. IEA has raised its forecast for 
the US by 300,000 barrels per day for 4th 
quarter of 2021 and by 200 barrels per 
day on average in 2022 as current prices 
provide a strong incentive to boost activity 
even as operators stick to capital discipline 
pledges. The US is set to account for 60% 
of 2022 non-OPEC+ supply gains, now 
forecast at 1.9 million barrels per day. Even 
so, the US will not return to pre-Covid rates 
until the end of 2022 [1]. 

In the November Short-Term Energy 
Outlook reported by the U.S. Energy 
Information Administration (EIA), supply 
uncertainty in the forecast results from 
the production decisions of OPEC+ along 
with the rate at which U.S. oil and natural 
gas producers increase drilling at forecast 
price levels [2]. 

Brent crude oil spot prices averaged 
USD 84 per barrel in October 2021, up USD 
9 per barrel from September and up USD 
43 per barrel from October 2020. Crude 
oil prices have risen over the past year 
as result of steady draws on global oil 
inventories, which averaged 1.9 million 
barrels per day during the first three 
quarters of 2021. In addition to sustained 
inventory draws, prices increased after 
OPEC+ announced in early October - and 
reaffirmed on 4 November - that the 
group would keep current production 
targets unchanged. EIA expects Brent 
prices will remain near current levels for 
the rest of 2021, averaging USD 82 per 
barrel in the 4th quarter of 2021. In 2022, 
EIA expects that growth in production 
from OPEC+, U.S. tight oil, and other 
non-OPEC countries will outpace slowing 
growth in global oil consumption and 
contribute to Brent prices declining from 
current levels to an annual average of USD 
72 per barrel.

EIA estimates that 98.9 million 
barrels per day of petroleum and liquid 
fuels was consumed globally in October, 
an increase of 4.5 million barrels per day 
from October 2020 but 1.9 million barrels 
per day less than in October 2019. EIA has 
been revised up forecast for consumption 
of petroleum and liquid fuels for the 4th 
quarter of 2021, partially as a result of fuel 
switching from natural gas to petroleum 
in the electric power sector in parts of 
Asia and Europe. This fuel switching is a 
result of increases in natural gas prices in 
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Figure 2. Estimated unplanned liquid fuels production outages among OPEC and non-OPEC producers [2].

Table 1. World crude oil and liquid fuels production (million barrels per day) [2]

Region/Country 2018 2019 2020 2021 2022 
OPEC Countries 36,721 34,670 30,710 31,679 33,899 
North America 25,334 26,928 25,779 26,265 27,866 
   Canada 5,364 5,494 5,255 5,589 5,835 
   Mexico 2,083 1,921 1,939 1,925 1,881 
   United States 17,886 19,513 18,585 18,750 20,151 
Eurasia 14,442 14,488 13,318 13,588 14,515 
   Russia 11,391 11,480 10,504 10,793 11,583 
   Azerbaijan 0.796 0.774 0.702 0.719 0.748 
   Kazakhstan 1,959 1,966 1,860 1,837 1,956 
   Turkmenistan 0.296 0.267 0.252 0.239 0.228 
Latin America 5,389 5,667 5,665 5,738 6,164 
   Argentina 0.679 0.690 0.635 0.670 0.727 
   Brazil 3,428 3,674 3.787 3,836 4,141 
   Colombia 0.895 0.918 0.811 0.764 0.757 
   Other Latin America 0.388 0.385 0.432 0.467 0.540 
Other Non-OPEC 18,831 18,899 18,715 18,698 18,972 
World total 100,718 100,652 94,187 95,967 101,417 
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Asia and Europe. EIA forecasts that global 
consumption of petroleum and liquid 
fuels will average 97.5 million barrels per 
day for all of 2021, which is a 5.1 million 
barrels per day increase from 2020. EIA 
forecasts that global consumption of 
petroleum and liquid fuels will increase 
by 3.3 million barrels per day in 2022.

U.S. crude oil production averaged an 
estimated 11.4 million barrels per day in 
October, up from 10.7 million barrels per 
day in September as a result of production 
increases following disruptions from 
Hurricane Ida. EIA forecasts production 
will rise to 11.6 million barrels per 
day in December. EIA forecasts annual 
production will average 11.1 million 
barrels per day in 2021, increasing to 11.9 
million barrels per day in 2022 as tight oil 
production rises in the United States. 

At its early October meeting and 
reaffirmed at its 4 November meeting, 
OPEC+ committed to maintaining its 
scheduled crude oil production increase 
of 400,000 barrels per day in December 
rather than increase production by more 
in response to high crude oil prices and 
increasing demand [2].

OPEC now expects global oil demand 
to average 96.44 million barrels per day 
in 2021, for year-on-year growth of 5.65 
million barrels per day. For 2022, demand 
will rise by 4.15 million barrels per day, 
unchanged from last month's forecast, 
to hit 100.59 million barrels per day. Its 
forecasts for non-OPEC production were 
unchanged from last month's report, at 
63.64 million barrels per day for 2021, up 
660,000 barrels per day year-on-year, and 
66.66 million barrels per day for 2022, up 
3.02 million barrels per day [3].

According to the Bloomberg, global 
oil supply is set to average 101.42 million 
barrels a day in 2022, while worldwide 

demand is seen at 100.88 million barrels 
a day. Meanwhile, U.S. crude production 
is expected to rise to average 11.9 million 
barrels a day in 2022 as drillers make 
a comeback. A nearly 15% rally in WTI 
crude prices since July is luring some 
shale producers to ramp up output, most 
notably private drillers. While the outlook 
marks an expected increase in supply, it 
is still far from the record annual volume 
reached in 2019 as the recovery across 
major shale regions has been mixed [4].

If the world continues to make 
progress on keeping Covid-19 infection 
and death rates low, the current price 
of about USD 80 a barrel is reasonable. 
Actual growth that matches expectations 
would not push prices higher [5].

Hanh Nguyen
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Figure 3. World liquid fuels consumption [2].


